developing flow
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 37)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 2070 (1) ◽  
pp. 012230
Author(s):  
M. L.R. Chaitanya Lahari ◽  
P.H.V. Sesha Talpa Sai ◽  
K.V. Sharma ◽  
K.S. Narayanaswamy ◽  
P.Haseena Bee ◽  
...  

Abstract Convective and overall heat transfer coefficients of SiO2 nanofluid flowing in a concentric DTHE are determined experimentally. The tests are carried out in the 800<Re<1900 range using SiO2/22nm nanofluids prepared in 0.2, 0.6 and 1.0% volume concentrations in 30:70 ratio glycerol-water mixture base liquid. The thermal and physical properties of silica nanofluids are determined in the range of 20-80°C. Viscosity, thermal conductivity, and density of nanofluids increased with particle concentration whereas specific heat decreased. Thermal conductivity and specific heat of nanofluids increased with temperature while viscosity and density decreased. Heat transfer experiments are conducted using nanofluids at a bulk temperature of 35°C in a laminar developing flow region. Overall heat transfer coefficient and convective HTC of 1.0% silica nanofluids are increased by 21.2 and 36.3% compared to base liquid.


2021 ◽  
Vol 39 (4) ◽  
pp. 1389-1394
Author(s):  
Gooi Mee Chen ◽  
Yew Hau Yip

Compared to the existing more elaborate eigenvalues-eigenfunction analytical solution where the solution of a thermally developing forced convection problem converges very slowly at the beginning of thermal entrant region, Leveque-type similarity transformation method provides a more convenient way to look into the insights of the problem. Assuming that the wall heat flux and viscous dissipation only has an effect within the thin thermal boundary layer at the beginning of the thermal entrance region, this study intends to solve the governing thermal energy equation for a thermally developing flow in a parallel plate channel, subjected to uniform heat flux, by means of Leveque-type similarity transformation. The resulting ordinary differential equation, is subsequently solved by a fourth order Runge Kutta method. A comparison of the Nusselt number along the axial direction, at the beginning of the thermally developing region with the literature, reveals less than 10% discrepancy for Brinkman number less than one, which is a commonly acceptable range for practical applications. Although its accuracy depletes downstream the channel, similarity transformation provides sufficiently accurate temperature distribution, and captures the heat transfer insights for a thermally developing viscous dissipative forced convection.


Author(s):  
Farhan Ahmed

This article shows the thermally developing flow through concentric pipes annular sector duct by describing the Darcy Brinkman flow field. The cross sectional convection-diffusion terms are transformed in power law discretized form by integrating over the differential volume, whereas backward difference scheme is used in the axial direction of heat flow. With the help of semi implicit method for pressure linked equations-revised ( SIMPLE-R), we get the solution of the governing problem. The graphs of velocity profiles against R and average Nusselt number against axial distance are plotted for different values of Darcy number and geometrical configuration parameters. It has been pointed out that velocity and thermal entrance length decrease, when we decrease the value of Darcy number. By decreasing the cross section of the concentric pipes annular sector duct in the transverse direction, thermally fully developed flow region develops earlier.


2021 ◽  
Vol 79 ◽  
pp. 101894
Author(s):  
Aneeq Raheem ◽  
Abdus Saboor Baseer Siddiqi ◽  
Asim Ibrahim ◽  
Atta Ullah ◽  
Mansoor Hameed Inayat

2021 ◽  
pp. 1-10
Author(s):  
Liangbin Su ◽  
Zhipeng Duan ◽  
Boshu He ◽  
Hao Ma
Keyword(s):  

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Mohammad Naghashnejad ◽  
Hamidreza Shabgard ◽  
Theodore L. Bergman

Abstract A computational fluid dynamics model is developed to study the dynamics of meniscus formation and capillary flow between vertical parallel plates. An arbitrary Lagrangian–Eulerian approach is employed to predict and reconstruct the shape of the meniscus with no need to employ implicit interface tracking schemes. The developed model is validated by comparing the equilibrium capillary height and meniscus shape with those predicted by available theoretical models. The model was used to predict the capillary flow of water in hydrophilic (silver) and hydrophobic (Teflon) vertical channels with wall spacings ranging from 0.5 mm to 3 mm. It is shown that the computational model accurately predicts the capillary flow regardless of the channel width, whereas the theoretical models fail at relatively large wall spacings. The model captures several important hydrodynamic phenomena that cannot be accounted for in the theoretical models including the presence of developing flow in the entrance region, time-dependent formation of the meniscus, and the inertial effects of the liquid in the reservoir. The sharp interface tracking technique enables direct access to the flow variables and transport fluxes at the meniscus with no need to use averaging techniques.


Sign in / Sign up

Export Citation Format

Share Document