Parameter Extension Simulation of Turbulent Flows in a Compressor Cascade With a High Reynolds Number

Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.

2013 ◽  
Vol 721 ◽  
pp. 58-85 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall ◽  
Andrew Walton

AbstractThe recently understood relationship between high-Reynolds-number vortex–wave interaction theory and computationally generated self-sustaining processes provides a possible route to an understanding of some of the underlying structures of fully turbulent flows. Here vortex–wave interaction (VWI) theory is used in the long streamwise wavelength limit to continue the development found at order-one wavelengths by Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). The asymptotic description given reduces the Navier–Stokes equations to the so-called boundary-region equations, for which we find equilibrium states describing the change in the VWI as the wavelength of the wave increases from $O(h)$ to $O(Rh)$, where $R$ is the Reynolds number and $2h$ is the depth of the channel. The reduced equations do not include the streamwise pressure gradient of the perturbation or the effect of streamwise diffusion of the wave–vortex states. The solutions we calculate have an asymptotic error proportional to ${R}^{- 2} $ when compared to the full Navier–Stokes equations. The results found correspond to the minimum drag configuration for VWI states and might therefore be of relevance to the control of turbulent flows. The key feature of the new states discussed here is the thickening of the critical layer structure associated with the wave part of the flow to completely fill the channel, so that the roll part of the flow is driven throughout the flow rather than as in Hall & Sherwin as a stress discontinuity across the critical layer. We identify a critical streamwise wavenumber scaling, which, when approached, causes the flow to localize and take on similarities with computationally generated or experimentally observed turbulent spots. In effect, the identification of this critical wavenumber for a given value of the assumed high Reynolds number fixes a minimum box length necessary for the emergence of localized structures. Whereas nonlinear equilibrium states of the Navier–Stokes equations are thought to form a backbone on which turbulent flows hang, our results suggest that the localized states found here might play a related role for turbulent spots.


1993 ◽  
Vol 115 (4) ◽  
pp. 638-645 ◽  
Author(s):  
Hsiao C. Kao

The problem of turbulent flows in two-inlet channels has been studied numerically by solving the Reynolds-averaged Navier-Stokes equations with the k–ε model in a mapped domain. Both the high Reynolds number and the low Reynolds number form were used for this purpose. In general, the former predicts a weaker and smaller recirculation zone than the latter. Comparisons with experimental data, when applicable, were also made. The bulk of the present computations used, however, the high Reynolds number form to correlate different geometries and inflow conditions with the flow properties after turning.


2003 ◽  
Vol 478 ◽  
pp. 227-235 ◽  
Author(s):  
J. D. GIBBON ◽  
Charles R. DOERING

Dissipation-range intermittency was first observed by Batchelor & Townsend (1949) in high Reynolds number turbulent flows. It typically manifests itself in spatio-temporal binary behaviour which is characterized by long, quiescent periods in the signal which are interrupted by short, active ‘events’ during which there are large excursions away from the average. It is shown that Leray's weak solutions of the three-dimensional incompressible Navier–Stokes equations can have this binary character in time. An estimate is given for the widths of the short, active time intervals, which decreases with the Reynolds number. In these ‘bad’ intervals singularities are still possible. However, the average width of a ‘good’ interval, where no singularities are possible, increases with the Reynolds number relative to the average width of a bad interval.


2007 ◽  
Vol 589 ◽  
pp. 57-81 ◽  
Author(s):  
G. GULITSKI ◽  
M. KHOLMYANSKY ◽  
W. KINZELBACH ◽  
B. LÜTHI ◽  
A. TSINOBER ◽  
...  

This is a report on a field experiment in an atmospheric surface layer at heights between 0.8 and 10m with the Taylor micro-scale Reynolds number in the range Reλ = 1.6−6.6 ×103. Explicit information is obtained on the full set of velocity and temperature derivatives both spatial and temporal, i.e. no use of Taylor hypothesis is made. The report consists of three parts. Part 1 is devoted to the description of facilities, methods and some general results. Certain results are similar to those reported before and give us confidence in both old and new data, since this is the first repetition of this kind of experiment at better data quality. Other results were not obtained before, the typical example being the so-called tear-drop R-Q plot and several others. Part 2 concerns accelerations and related matters. Part 3 is devoted to issues concerning temperature, with the emphasis on joint statistics of temperature and velocity derivatives. The results obtained in this work are similar to those obtained in experiments in laboratory turbulent grid flow and in direct numerical simulations of Navier–Stokes equations at much smaller Reynolds numbers Reλ ~ 102, and this similarity is not only qualitative, but to a large extent quantitative. This is true of such basic processes as enstrophy and strain production, geometrical statistics, the role of concentrated vorticity and strain, reduction of nonlinearity and non-local effects. The present experiments went far beyond the previous ones in two main respects. (i) All the data were obtained without invoking the Taylor hypothesis, and therefore a variety of results on fluid particle accelerations became possible. (ii) Simultaneous measurements of temperature and its gradients with the emphasis on joint statistics of temperature and velocity derivatives. These are reported in Parts 2 and 3.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


1991 ◽  
Vol 113 (1) ◽  
pp. 31-36 ◽  
Author(s):  
G. Tryggvason ◽  
W. J. A. Dahm ◽  
K. Sbeih

Numerical simulations of the large amplitude stage of the Kelvin-Helmholtz instability of a relatively thin vorticity layer are discussed. At high Reynolds number, the effect of viscosity is commonly neglected and the thin layer is modeled as a vortex sheet separating one potential flow region from another. Since such vortex sheets are susceptible to a short wavelength instability, as well as singularity formation, it is necessary to provide an artificial “regularization” for long time calculations. We examine the effect of this regularization by comparing vortex sheet calculations with fully viscous finite difference calculations of the Navier-Stokes equations. In particular, we compare the limiting behavior of the viscous simulations for high Reynolds numbers and small initial layer thickness with the limiting solution for the roll-up of an inviscid vortex sheet. Results show that the inviscid regularization effectively reproduces many of the features associated with the thickness of viscous vorticity layers with increasing Reynolds number, though the simplified dynamics of the inviscid model allows it to accurately simulate only the large scale features of the vorticity field. Our results also show that the limiting solution of zero regularization for the inviscid model and high Reynolds number and zero initial thickness for the viscous simulations appear to be the same.


1993 ◽  
Vol 256 ◽  
pp. 163-197 ◽  
Author(s):  
Reidar Kristoffersen ◽  
Helge I. Andersson

Direct numerical simulations of fully developed pressure-driven turbulent flow in a rotating channel have been performed. The unsteady Navier–Stokes equations were written for flow in a constantly rotating frame of reference and solved numerically by means of a finite-difference technique on a 128 × 128 × 128 computational mesh. The Reynolds number, based on the bulk mean velocity Um and the channel half-width h, was about 2900, while the rotation number Ro = 2|Ω|h/Um varied from 0 to 0.5. Without system rotation, results of the simulation were in good agreement with the accurate reference simulation of Kim, Moin & Moser (1987) and available experimental data. The simulated flow fields subject to rotation revealed fascinating effects exerted by the Coriolis force on channel flow turbulence. With weak rotation (Ro = 0.01) the turbulence statistics across the channel varied only slightly compared with the nonrotating case, and opposite effects were observed near the pressure and suction sides of the channel. With increasing rotation the augmentation and damping of the turbulence along the pressure and suction sides, respectively, became more significant, resulting in highly asymmetric profiles of mean velocity and turbulent Reynolds stresses. In accordance with the experimental observations of Johnston, Halleen & Lezius (1972), the mean velocity profile exhibited an appreciable region with slope 2Ω. At Ro = 0.50 the Reynolds stresses vanished in the vicinity of the stabilized side, and the nearly complete suppression of the turbulent agitation was confirmed by marker particle trackings and two-point velocity correlations. Rotational-induced Taylor-Görtler-like counter-rotating streamwise vortices have been identified, and the simulations suggest that the vortices are shifted slightly towards the pressure side with increasing rotation rates, and the number of vortex pairs therefore tend to increase with Ro.


Sign in / Sign up

Export Citation Format

Share Document