scholarly journals Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 1. Facilities, methods and some general results

2007 ◽  
Vol 589 ◽  
pp. 57-81 ◽  
Author(s):  
G. GULITSKI ◽  
M. KHOLMYANSKY ◽  
W. KINZELBACH ◽  
B. LÜTHI ◽  
A. TSINOBER ◽  
...  

This is a report on a field experiment in an atmospheric surface layer at heights between 0.8 and 10m with the Taylor micro-scale Reynolds number in the range Reλ = 1.6−6.6 ×103. Explicit information is obtained on the full set of velocity and temperature derivatives both spatial and temporal, i.e. no use of Taylor hypothesis is made. The report consists of three parts. Part 1 is devoted to the description of facilities, methods and some general results. Certain results are similar to those reported before and give us confidence in both old and new data, since this is the first repetition of this kind of experiment at better data quality. Other results were not obtained before, the typical example being the so-called tear-drop R-Q plot and several others. Part 2 concerns accelerations and related matters. Part 3 is devoted to issues concerning temperature, with the emphasis on joint statistics of temperature and velocity derivatives. The results obtained in this work are similar to those obtained in experiments in laboratory turbulent grid flow and in direct numerical simulations of Navier–Stokes equations at much smaller Reynolds numbers Reλ ~ 102, and this similarity is not only qualitative, but to a large extent quantitative. This is true of such basic processes as enstrophy and strain production, geometrical statistics, the role of concentrated vorticity and strain, reduction of nonlinearity and non-local effects. The present experiments went far beyond the previous ones in two main respects. (i) All the data were obtained without invoking the Taylor hypothesis, and therefore a variety of results on fluid particle accelerations became possible. (ii) Simultaneous measurements of temperature and its gradients with the emphasis on joint statistics of temperature and velocity derivatives. These are reported in Parts 2 and 3.

2013 ◽  
Vol 721 ◽  
pp. 58-85 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall ◽  
Andrew Walton

AbstractThe recently understood relationship between high-Reynolds-number vortex–wave interaction theory and computationally generated self-sustaining processes provides a possible route to an understanding of some of the underlying structures of fully turbulent flows. Here vortex–wave interaction (VWI) theory is used in the long streamwise wavelength limit to continue the development found at order-one wavelengths by Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). The asymptotic description given reduces the Navier–Stokes equations to the so-called boundary-region equations, for which we find equilibrium states describing the change in the VWI as the wavelength of the wave increases from $O(h)$ to $O(Rh)$, where $R$ is the Reynolds number and $2h$ is the depth of the channel. The reduced equations do not include the streamwise pressure gradient of the perturbation or the effect of streamwise diffusion of the wave–vortex states. The solutions we calculate have an asymptotic error proportional to ${R}^{- 2} $ when compared to the full Navier–Stokes equations. The results found correspond to the minimum drag configuration for VWI states and might therefore be of relevance to the control of turbulent flows. The key feature of the new states discussed here is the thickening of the critical layer structure associated with the wave part of the flow to completely fill the channel, so that the roll part of the flow is driven throughout the flow rather than as in Hall & Sherwin as a stress discontinuity across the critical layer. We identify a critical streamwise wavenumber scaling, which, when approached, causes the flow to localize and take on similarities with computationally generated or experimentally observed turbulent spots. In effect, the identification of this critical wavenumber for a given value of the assumed high Reynolds number fixes a minimum box length necessary for the emergence of localized structures. Whereas nonlinear equilibrium states of the Navier–Stokes equations are thought to form a backbone on which turbulent flows hang, our results suggest that the localized states found here might play a related role for turbulent spots.


2013 ◽  
Vol 734 ◽  
pp. 275-316 ◽  
Author(s):  
Rashad Moarref ◽  
Ati S. Sharma ◽  
Joel A. Tropp ◽  
Beverley J. McKeon

AbstractWe study the Reynolds-number scaling and the geometric self-similarity of a gain-based, low-rank approximation to turbulent channel flows, determined by the resolvent formulation of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), in order to obtain a description of the streamwise turbulence intensity from direct consideration of the Navier–Stokes equations. Under this formulation, the velocity field is decomposed into propagating waves (with single streamwise and spanwise wavelengths and wave speed) whose wall-normal shapes are determined from the principal singular function of the corresponding resolvent operator. Using the accepted scalings of the mean velocity in wall-bounded turbulent flows, we establish that the resolvent operator admits three classes of wave parameters that induce universal behaviour with Reynolds number in the low-rank model, and which are consistent with scalings proposed throughout the wall turbulence literature. In addition, it is shown that a necessary condition for geometrically self-similar resolvent modes is the presence of a logarithmic turbulent mean velocity. Under the practical assumption that the mean velocity consists of a logarithmic region, we identify the scalings that constitute hierarchies of self-similar modes that are parameterized by the critical wall-normal location where the speed of the mode equals the local turbulent mean velocity. For the rank-1 model subject to broadband forcing, the integrated streamwise energy density takes a universal form which is consistent with the dominant near-wall turbulent motions. When the shape of the forcing is optimized to enforce matching with results from direct numerical simulations at low turbulent Reynolds numbers, further similarity appears. Representation of these weight functions using similarity laws enables prediction of the Reynolds number and wall-normal variations of the streamwise energy intensity at high Reynolds numbers (${Re}_{\tau } \approx 1{0}^{3} {\unicode{x2013}} 1{0}^{10} $). Results from this low-rank model of the Navier–Stokes equations compare favourably with experimental results in the literature.


1993 ◽  
Vol 115 (4) ◽  
pp. 638-645 ◽  
Author(s):  
Hsiao C. Kao

The problem of turbulent flows in two-inlet channels has been studied numerically by solving the Reynolds-averaged Navier-Stokes equations with the k–ε model in a mapped domain. Both the high Reynolds number and the low Reynolds number form were used for this purpose. In general, the former predicts a weaker and smaller recirculation zone than the latter. Comparisons with experimental data, when applicable, were also made. The bulk of the present computations used, however, the high Reynolds number form to correlate different geometries and inflow conditions with the flow properties after turning.


Author(s):  
Shafqat Ali ◽  
Saddam Hijazi ◽  
Sokratia Georgaka ◽  
Francesco Ballarin ◽  
Giovanni Stabile ◽  
...  

We present different strategies to be able to increase Reynolds number in Reduced Order Methods (ROMs), from laminar to turbulent flows, in the context of the incompressible parametrised Navier-Stokes equations. The proposed methodologies are based on different full order discretisation techniques: the finite element method and the finite volume method. For what concerns finite element full order discretisations which in this work aim to be used from low to moderate Reynolds numbers the


2003 ◽  
Vol 478 ◽  
pp. 227-235 ◽  
Author(s):  
J. D. GIBBON ◽  
Charles R. DOERING

Dissipation-range intermittency was first observed by Batchelor & Townsend (1949) in high Reynolds number turbulent flows. It typically manifests itself in spatio-temporal binary behaviour which is characterized by long, quiescent periods in the signal which are interrupted by short, active ‘events’ during which there are large excursions away from the average. It is shown that Leray's weak solutions of the three-dimensional incompressible Navier–Stokes equations can have this binary character in time. An estimate is given for the widths of the short, active time intervals, which decreases with the Reynolds number. In these ‘bad’ intervals singularities are still possible. However, the average width of a ‘good’ interval, where no singularities are possible, increases with the Reynolds number relative to the average width of a bad interval.


2014 ◽  
Vol 699 ◽  
pp. 416-421
Author(s):  
Mohd Noor Asril Saadun ◽  
Muhammad Zulhakim Sharudin ◽  
Nor Azwadi Che Sidik ◽  
Mohd Hafidzal Mohd Hanafi

A preliminary study of Computational Fluid Dynamics (CFD) on the effect of high Reynolds numbers in the cavity has been carried out. Two dimensional model analysis of the flow characteristics were conducted using the numerical solution of Navier-Stokes equations based on the finite difference method. The flow characteristics in the cavity and the driven flow were modeled via turbulence equation modelling. This paper focuses on the effects of different high Reynolds number on the flow pattern of contaminant removal in the cavity. Different types of geometry and aspect ratio of the geometry were used as the parameters of the cavity in this study. Based on visualization of flows between each model with the different parameters used, the results of a comparison analysis focusing on the behavior of the flow were reported.


Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


Sign in / Sign up

Export Citation Format

Share Document