Discrete Element Method Simulations of Additively Manufactured Components With Integrated Particle Dampers

2021 ◽  
Author(s):  
Daniel Kiracofe ◽  
Matthew Postell ◽  
Onome Scott-Emuakpor ◽  
Brian Runyon ◽  
Tommy George

Abstract One major benefit of Additive Manufacturing is parts counts reduction. Several formerly distinct parts can be printed as one unit, reducing cost and weight. However, the interface between parts is often a major source of vibration damping, so eliminating interfaces can lead to fatigue failures. To alleviate this, researchers have been exploring the integration of damping features inside parts. Leaving a small pocket of unfused powder creates a particle damper. Particle dampers have long been known to suppress unwanted vibration. However they are highly complex and predicting their behavior is difficult. The particle damper literature often has contradictory claims, as what works best for one application does not work for another. Because the additive feedstock powder is much smaller (5–50 μm) than particles in typical particle dampers, it is difficult to draw conclusions from the existing literature to develop design guidelines. This papers reports on a Discrete Element Method (DEM) numerical simulation of additively manufactured cantilever beams with a small pocket of unfused powder. DEM explicitly simulates the motion of each particle and their interactions. Previously reported experiments with varying beam geometry showed nearly an order of magnitude difference in damping ratio depending on the location of the pocket along the beam. The simulation was able to accurately predict the damping ratio based on the input geometry. As a result, the correlated simulation tool can be used to optimize future designs. From the simulations, it was observed that particle-wall momentum exchange and particle-particle inelastic collisions appeared to be key contributors to the damping ratio. Additionally, a non-linear subharmonic motion of particles was observed, which suggests additional ways to improve performance.

2018 ◽  
Vol 157 ◽  
pp. 02014
Author(s):  
Pawel Chodkiewicz ◽  
Jakub Lengiewicz ◽  
Robert Zalewski

In this paper, we present a novel approach to modeling and analysis of Vacuum Packed Particle dampers (VPP dampers) with the use of Discrete Element Method (DEM). VPP dampers are composed of loose granular medium encapsulated in a hermetic envelope, with controlled pressure inside the envelope. By changing the level of underpressure inside the envelope, one can control mechanical properties of the system. The main novelty of the DEM model proposed in this paper is the method to treat special (pressure) boundary conditions at the envelope. The model has been implemented within the open-source Yade DEM software. Preliminary results are presented and discussed in the paper. The qualitative agreement with experimental results has been achieved.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


2021 ◽  
Vol 910 ◽  
Author(s):  
Yiyang Jiang ◽  
Yu Guo ◽  
Zhaosheng Yu ◽  
Xia Hua ◽  
Jianzhong Lin ◽  
...  

Abstract


Sign in / Sign up

Export Citation Format

Share Document