Abstract
The latest dope-free configuration combines an electrodeposited zinc-nickel (ZnNi) plating, which provides anti-galling and most of anticorrosion properties, and an organic topcoat which provides lubrication through its low friction coefficient. This dry lubrication constitutes an alternative to storage and running dope meanwhile it improves running performances, reduces operational costs on the yard and rig and avoids dope discharge to the environment. Since the technology is "rig-ready", it must withstand the different risks of degradation occurring along its whole lifecycle. The present study aims at assessing the robustness towards ageing along storage on yards, transportation to the rig and or service life in well conditions.
The performances of the different layers were checked stepwise, first assessing the ZnNi plating alone, and then considering the additional protection brought by thermoset topcoat. Regarding atmospheric corrosion, the characterization path involved both accelerated laboratory tests (such as the VDA 233-102 cyclic corrosion test) and outdoor exposures, under plastic protectors and after their removal, in different climates: temperate, desertic and tropical. The specimens were inspected regarding at: (i) efficiency of cathodic protection provided by the metallic coating; (ii) paint blistering, (iii) propagation of corrosion from a scribe down to substrate. Regarding rig operations, some examples of rig-return were reported and the compatibility with completion fluids, encountered in case of misrun and subsequent pull-out of the column, was checked though immersion in alkaline brines. In respect to the service in simulated well conditions, the resistance to Stress Corrosion Cracking (SCC) in brines were carried out to complete the former autoclave tests to assess resistance of carbon and stainless steel to well conditions.
Both the ZnNi plating and the bi-layer system revealed lifetimes in storage conditions ranging from 3 to more than 5 years before any sign of significant degradation such as red rust, paint blistering or disbonding. According to cyclic corrosion tests results, higher lifetimes could be even expected thanks to the additional anticorrosion protection of the topcoat. Regarding exposure to completion fluids, the bilayer coating was shown to withstand 3000h exposure with no more than scarce rust indications. These results testify of the technology robustness from storage on yards to rig operations. In the multiple service conditions in wells, it was shown that the corrosion and cracking resistance of the substrate was not deteriorated by the plating presence, but instead improved in the multiple assessed well service conditions.
The present communication updates the results of atmospheric corrosion compared to the former one [1] and it details new results after rig-return and regarding the risks of cracking.