Fluid Flow and Heat Transfer in a Lid-Driven Cavity Due to an Oscillatory Thin Fin: Periodic State

Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A computational study of periodic laminar flow and heat transfer within a lid-driven square cavity due to an oscillating thin fin is presented. The lid moves from left to right and a thin fin positioned perpendicular to the right stationary wall oscillates in the horizontal direction. The length of the fin varies sinusoidally with its mean length and amplitude equal to 10 and 5 percent of the side of the cavity, respectively. Two Reynolds numbers of 100 and 1000 with a Pr = 1 fluid were considered. For a given convection time scale (tconv), fin’s oscillation periods (τ) were selected in order to cover both slow (τ/tconv>1) and fast (τ/tconv<1) oscillation regimes, covering a Strouhal number range of 0.005 to 0.5. The number of the cycles needed to reach the periodic state for the flow (Nf) and thermal (Nt) fields increases as the fin oscillates faster with Nf < Nt. The periodic flow field for the case with Re = 1000 and TR = 10 is distinguished by the creation, lateral motion and subsequent wall impingement of a CCW rotating vortex within the lower half of the cavity. Periodic flow and thermal fields of the other nine cases studied were not as varied. Phase diagrams of the stream function and temperature vs. fin’s length clearly exhibit the synchronous behavior of the system. Amplitude of fluctuations of the kinetic energy and temperature are very intense near the fin. As the fin oscillates slower, a greater portion of the cavity exhibits intense fluctuations. For slow to moderate oscillations, the maximum value of Kamp is observed to be greater for Re = 1000 in comparison to Re = 100. For fast oscillations, this behavior is reversed. The maximum values of the amplitude of fluctuations of temperature increase monotonically as the fin oscillates slower. The maximum values of θamp are greater for Re = 1000 compared to Re = 100. The amplitude of fluctuations of the mean Nusselt number on four walls increase as the fin oscillates slower.

2004 ◽  
Vol 126 (6) ◽  
pp. 924-930 ◽  
Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of transient laminar flow and heat transfer (neglecting natural convection) within a lid-driven square cavity due to an oscillating thin fin is presented. The lid moves from left to right and a thin fin positioned perpendicular to the right stationary wall oscillates in the horizontal direction. The length of the fin varies sinusoidally with its mean length and amplitude equal to 10 and 5 percent of the side of the cavity, respectively. Two Reynolds numbers of 100 and 1000 for a Pr=1 fluid were considered. For a given convection time scale tconv, fin’s oscillation periods (τ) were selected in order to cover both slow τ/tconv>1 and fast τ/tconv<1 oscillation regimes. This corresponded to a Strouhal number range of 0.005 to 0.5. The number of the cycles needed to reach the periodic state for the flow and thermal fields increases as τ/tconv decreases for both Re numbers with the thermal field attaining the periodic state later than the velocity field. The key feature of the transient evolution of the fluid flow for the case with Re=1000 with slow oscillation is the creation, lateral motion and subsequent wall impingement of a CCW rotating vortex within the lower half of the cavity. This CCW rotating vortex that has a lifetime of about 1.5τ brings about marked changes to the temperature field within a cycle. The dimensionless time for the mean Nusselt numbers to reach their maximum or minimum is independent of the frequency of the fin’s oscillation and is dependent on the distance between the oscillating fin and the respective wall, and the direction of the primary CW rotating vortex. The phase lag angle between the oscillation of the fin and the mean Nusselt number on the four walls increases as the distance between the fin and the respective wall increases.


2002 ◽  
Vol 124 (6) ◽  
pp. 1056-1063 ◽  
Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of steady laminar flow and heat transfer (neglecting natural convection) within a lid-driven square cavity due to a single thin fin is presented. The lid moves from left to right and a fixed thin fin can be positioned perpendicular to any of the three stationary walls. Three fins with lengths equal to 5, 10, and 15 percent of the side, positioned at 15 locations were examined for Re=500, 1000, 2000, and Pr=1 (total of 135 cases). Placing a fin on the right wall brings about multi-cell recirculating vortices compared to the case without a fin that exhibits a primary vortex and two small corner cells. A fin slows the flow near the anchoring wall and reduces the temperature gradients, thus degrading heat transfer capacity. A fin positioned near the top right corner of the cavity can reduce heat transfer most effectively in cases with all three different Reynolds numbers and lengths. Regardless of the Reynolds number, placing a fin on the right wall—compared to putting a fin on the left and bottom walls—can always enhance heat transfer on the left wall and at the same time, reduce heat transfer on the bottom, right and top walls. A long fin has the most marked effect on the system’s heat transfer capabilities. Mean Nusselt number was successfully correlated to the Reynolds number, length of the fin and its position.


Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of transient laminar flow and heat transfer (neglecting natural convection) within a lid-driven square cavity due to an oscillating thin fin is presented. The lid moves from left to right and a thin fin positioned perpendicular to the right stationary wall oscillates in the horizontal direction. The length of the fin varies sinusoidally with its mean length and amplitude equal to 10 and 5 percent of the side of the cavity, respectively. Two Reynolds numbers of 100 and 1000 with a Pr = 1 fluid were considered. For a given convection time scale (tconv), fin’s oscillation periods (τ) were selected in order to cover both slow (τ/tconv&gt;1) and fast (τ/tconv&lt;1) oscillation regimes. This corresponded to a Strouhal number range of 0.005 to 0.5. The number of the cycles needed to reach the periodic state for the flow and thermal fields increases as τ/tconv decreases for both Re numbers with the thermal field attaining the periodic state later than the velocity field. The key feature of the transient evolution of the fluid flow for the case with Re = 1000 with slow oscillation is the creation, lateral motion and subsequent wall impingement of a CCW rotating vortex within the lower half of the cavity. This CCW rotating vortex that has a lifetime of about 1.5τ brings about marked changes to the temperature field within a cycle. The dimensionless time for the mean Nusselt numbers to reach their maximum or minimum is independent of the frequency of the fin’s oscillation and dependent on the distance between the oscillating fin and the respective wall, and the direction of the primary CW rotating vortex. The phase lag angle between the oscillation of the fin and the mean Nusselt number on the four walls increases as the distance between the fin and the respective wall increases.


2011 ◽  
Vol 52-54 ◽  
pp. 511-516 ◽  
Author(s):  
Arup Kumar Borah

In this paper we have studied the streamfunction-vorticity formulation can be advantageously used to analyse steady as well as unsteady incompressible flow and heat transfer problems, since it allows the elimination of pressure from the governing equations and automatically satisfies the continuity constraint. On the other hand, the specification of boundary conditions for the streamfunction-vorticity is not easy and a poor evaluation of these conditions may lead to serious difficulties in obtaining a converged solution. The main issue addressed in this paper is the specification in the boundary conditions in the context of finite element of discretization, but approach utilized can be easily extended to finite volume computations.


2019 ◽  
Vol 344 ◽  
pp. 463-474 ◽  
Author(s):  
Zehua Guo ◽  
Zhongning Sun ◽  
Nan Zhang ◽  
Ming Ding ◽  
Haozhi Bian ◽  
...  

1959 ◽  
Vol 81 (3) ◽  
pp. 175-183 ◽  
Author(s):  
I. S. Bjorklund ◽  
W. M. Kays

In this paper the problem of convective heat transfer between concentric rotating cylinders is studied. Experimental heat-transfer data are presented for four different values of clearance between the cylinders and for several combinations of outer to inner cylinder speed. The heat-transfer performance indicates three regimes of flow; the first at low peripheral velocities, in which laminar flow and heat transfer by conduction prevail, the second at cylinder speeds above a theoretically predictable value, in which vortex flow occurs and is the controlling mechanism, and a third at still higher speeds, in which a distorted type of vortex motion may be present. The data for the case of the inner cylinder only rotating can be correlated by the equation NNu/NNucond=0.175NTa12 for the Taylor number range 90 to 2000. A heat-and-momentum-transfer-analogy solution for this case follows the trend of the data, but gives results which are somewhat high. The combined effects of rotation of both cylinders may be correlated by the empirical equation NNuNNucond=1.1NTa-NTacrη-NTacr01-3.5d/R141.1+NTacrη-NTacr03.5d/R112 for values of the abscissa from about 2 to 50.


Sign in / Sign up

Export Citation Format

Share Document