Coupling a Discrete Transfer Method to a View Factors Technique for Radiative Heat Transfer Modeling in Industrial Furnaces

2005 ◽  
Author(s):  
Youssef Joumani ◽  
Guillaume Mougin ◽  
Fouad Ammouri ◽  
Marc Till

Air Liquide has been involved in the design of industrial furnaces (glass melting, reheating, aluminum, …) for several years. Thanks to that experience, known-how and expertise in modeling such applications have been developed. Dedicated simulation tools — 0D for global heat and mass balance, 1D for the prediction of longitudinal temperature profiles and 3D for detailed analysis — have been built. Each of them is very helpful when used relevantly and offers numerous opportunities at each step of the design of a furnace. In such kind of applications, the temperature levels are very high (up to 2500 K). As a consequence it is very crucial to simulate the radiative heat transfer as accurately as possible. This requires the use of a radiation model that can take into account complex geometries, non-isothermal media and various gas mixture compositions. Very often, three-dimensional simulations are necessary and reduction to smaller dimension problems is difficult or inadequate. The present paper introduces a new radiation model for computing two-dimensionally radiative heat transfer in an industrial furnace with a piecewise distributed load. To reduce the three-dimensional problem to two dimensions, the method consists in coupling the 2D radiation transport equation to a boundary condition based on view factors through an imaginary plane to homogenize the radiative behavior of the load surface. A solution procedure using the discrete transfer method associated to a weighted-sum-of-gray-gases database to deal with absorption and emission of a CO2-H2O mixture is proposed. Simulation results are finally compared to an analytical formula and then to a full-3D approach taking into account participating media, non-isothermal and gray walls. All tests show that this model can be used to simulate industrial configurations with a good accuracy.

2001 ◽  
Vol 123 (4) ◽  
pp. 530-536 ◽  
Author(s):  
Zhixiong Guo ◽  
Shigenao Maruyama

The radiation element method by ray emission method, REM2, has been formulated to predict radiative heat transfer in three-dimensional arbitrary participating media with nongray and anisotropically scattering properties surrounded by opaque surfaces. To validate the method, benchmark comparisons were conducted against the existing several radiation methods in a rectangular three-dimensional media composed of a gas mixture of carbon dioxide and nitrogen and suspended carbon particles. Good agreements between the present method and the Monte Carlo method were found with several particle density variations, in which participating media of optical thin, medium, and thick were included. As a numerical example, the present method is applied to predict radiative heat transfer in a boiler model with nonisothermal combustion gas and carbon particles and diffuse surface wall. Elsasser narrow-band model as well as exponential wide-band model is adopted to consider the spectral character of CO2 and H2O gases. The distributions of heat flux and heat flux divergence in the boiler furnace are obtained. The difference of results between narrow-band and wide-band models is discussed. The effects of gas model, particle density, and anisotropic scattering are scrutinized.


1997 ◽  
Vol 119 (1) ◽  
pp. 118-128 ◽  
Author(s):  
P. J. Coelho ◽  
M. G. Carvalho

The discrete transfer method, often employed to calculate radiative heat transfer in combustion chambers, is not conservative. The reason for this behavior is examined and a conservative formulation is proposed and evaluated. A simple treatment of isotropic scattering media is also presented. The original and the conservative formulation of the method are applied to two-dimensional and three-dimensional enclosures containing a participating medium. It is shown that the accuracy of the original and the conservative formulation is very similar, but the proposed formulation has the advantage of ensuring energy conservation.


Author(s):  
Georgios N. Lygidakis ◽  
Stavros N. Leloudas ◽  
Ioannis K. Nikolos

Considering that radiative heat transfer is encountered in many engineering and industrial applications, significant efforts have been applied during the last decades for the development of relevant numerical methodologies. In this study, such an inhouse academic radiative heat transfer method is presented in brief, whereas it is evaluated against a geometrically complex furnace. The proposed solver depends on the time-dependent RTE (Radiative Transfer Equation) aiming to predict radiative heat transfer in general enclosures through absorbing, emitting, and either isotropically or anisotropically scattering gray media. Spatial discretization is obtained with a node-centered finite-volume method on three-dimensional tetrahedral or hybrid unstructured grids. Increased accuracy is succeeded with a second-order scheme. The final steady-state solution is obtained with an iterative procedure, based on an explicit second-order accurate in time four-stage Runge-Kutta method and accelerated mainly via parallel processing and an agglomeration multigrid scheme. The proposed solver is assessed against an experimental three-dimensional furnace case, incorporating many of the geometric complexities encountered in industrial furnace systems. The predicted numerical results, regarding the incident wall fluxes, are compared with the available experimental data, revealing a satisfactory agreement and consequently demonstrating the proposed code’s potential to predict accurately radiative heat transfer in complex enclosures.


Sign in / Sign up

Export Citation Format

Share Document