band model
Recently Published Documents


TOTAL DOCUMENTS

1191
(FIVE YEARS 113)

H-INDEX

65
(FIVE YEARS 5)

2022 ◽  
Vol 105 (3) ◽  
Author(s):  
S. Verret ◽  
A. Foley ◽  
D. Sénéchal ◽  
A.-M. S. Tremblay ◽  
M. Charlebois
Keyword(s):  

Author(s):  
О.И. Марков

An attempt is made to calculate the contribution of the distributed Peltier effect to the efficiency of the branch of the thermoelement Z for various types of impurity distribution. For this purpose, the boundary problem of thermal balance in the branch of the thermoelectric element was solved numerically, taking into account the distributed Peltier effect. The case of non-degenerate charge carriers was considered within the framework of the standard two-band model. The parameters of charge carriers were selected close to thermoelectrics based on bismuth and antimony tellurides. As the calculation in the framework of the two-zone model showed, the use of the distributed Peltier effect leads only to partial absorption of Joule heat, which contributes to an increase in the overall efficiency of the branch. In this case, the Z parameter along a significant part of the branch takes values significantly less than the maximum value


2021 ◽  
Author(s):  
Bao Jing Hu ◽  
Ming Huang ◽  
SuMei Hong ◽  
JingJing Yang

Abstract In this paper, we investigate the dynamically tunable plasmon-induced transparency (PIT) effects in parallel black phosphorus nanoribbons (BPNRs). The results show that the BPNRs having different lengths can be regarded as bright modes. Single-band, double-band, triple-band, and multi-band PIT effects based on the bright-bright mode coupling between parallel BPNRs are achieved. The physical mechanism of the single-band model can be explained theoretically by the radiating two-oscillator (RTO) model. Due to the heavier effective mass in the zigzag (ZZ) direction of the BP, the frequencies of the transparent peaks are shifted to lower frequencies when the placement directions of BPNRs are changed from the X-direction to the Y-direction. Furthermore, the resonant frequencies of the transparent windows in each model can be tuned by changing the relaxation rates of the BPNRs. The frequencies of the transparent windows are blue-shifted as the relaxation rates are increased. Finally, The corresponding sensors based on single-band PIT effect show high sensitivities of 7.35 THz/RIU. Our study has potential applications for improving the design of multiple-band filters, sensors and on-off switcher.


2021 ◽  
Vol 14 (11) ◽  
pp. 6917-6928
Author(s):  
Clayton Cantrall ◽  
Tomoko Matsuo

Abstract. This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of N2. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature product as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column O/N2 ratio.


2021 ◽  
Vol 2112 (1) ◽  
pp. 012002
Author(s):  
Zhongke Sun ◽  
Zhongwei Chen ◽  
Xiao Ma

Abstract The high temperature plume of ships has obvious infrared radiation feature. Spraying water-liquid droplets in side exhaust system can effectively reduce the high temperature of the tail gas to reduce the infrared radiation of the exhaust plume. In this paper, ANSYS Fluent is used to establish the concentration field and temperature field of the side exhaust plume atter spraying water-liquid droplets. And the statistic narrow band model (Malkmus model) and the C-G approximation method are used to calculate the infrared radiation intensity of the exhaust plume in the normal direction of the exhaust outlet from 3 to 5 μm on this basis. The final results show that spraying water-liquid droplets in side exhaust pipe can reduce the infrared radiation of the side exhaust plume from 3 to 5um by 88.9%% compared with the initial intensity; when the water flow reaches 0.7kg/s, infrared radiation intensity remains unchanged.


Sign in / Sign up

Export Citation Format

Share Document