HEPA Filter Performance Under Adverse Conditions

Author(s):  
Michael Parsons ◽  
Kristina Hogancamp ◽  
Steven Alderman ◽  
Charles Waggoner

This study involved challenging nuclear grade high-efficiency particulate air (HEPA) filters under a variety of conditions that can arise in Department of Energy (DOE) applications such as: low or high RH, controlled and uncontrolled challenge, and filters with physically damaged media or seals (i.e., leaks). Reported findings correlate filter function as measured by traditional differential pressure techniques in comparison with simultaneous instrumental determination of up and down stream PM concentrations. Additionally, emission rates and failure signatures will be discussed for filters that have either failed or exceeded their usable lifetime. Significant findings from this effort include the use of thermocouples up and down stream of the filter housing to detect the presence of moisture. Also demonstrated in the moisture challenge series of tests is the effect of repeated wetting of the filter. This produces a phenomenon referred to as transient failure before the tensile strength of the media weakens to the point of physical failure. An evaluation of the effect of particle size distribution of the challenge aerosol on loading capacity of filters is also included. Results for soot and two size distributions of KCl are reported. Loading capacities for filters ranged from approximately 70 g of soot to nearly 900 g for the larger particle size distribution of KCl.

2017 ◽  
Vol 184 ◽  
pp. 240-247 ◽  
Author(s):  
A. Norori-McCormac ◽  
P.R. Brito-Parada ◽  
K. Hadler ◽  
K. Cole ◽  
J.J. Cilliers

2017 ◽  
Vol 64 (6) ◽  
pp. 281-287 ◽  
Author(s):  
Nur Zalikha KHALIL ◽  
Sanjay Kumar VAJPAI ◽  
Mie OTA ◽  
Kei AMEYAMA

Author(s):  
Vaishak Ramesh Sagar ◽  
Samuel Lorin ◽  
Johan Göhl ◽  
Johannes Quist ◽  
Christoffer Cromvik ◽  
...  

Abstract Selective laser melting (SLM) process is a powder bed fusion additive manufacturing process that finds applications in aerospace and medical industries for its ability to produce complex geometry parts. As the raw material used is in powder form, particle size distribution (PSD) is a significant characteristic that influences the build quality in turn affecting the functionality and aesthetics aspects of the product. This paper investigates the effect of PSD on the printed geometry for 316L stainless steel powder, where three coupled in-house simulation tools based on Discrete Element Method (DEM), Computational Fluid Dynamics (CFD), and Structural Mechanics are employed. DEM is used for simulating the powder bed distribution based on the different powder PSD. The CFD is used as a virtual testbed to determine thermal parameters such as heat capacity and thermal conductivity of the powder bed viewed as a continuum. The values found as a stochastic function of the powder distribution is used to analyse the effect on the melted zone and deformation using Structural Mechanics. Results showed that mean particle size and PSD had a significant effect on the packing density, melt pool layer thickness, and the final layer thickness after deformation. Specifically, a narrow particle size distribution with smaller mean particle size and standard deviation produced solidified final layer thickness closest to nominal layer thickness. The proposed simulation approach and the results will catalyze in development of geometry assurance strategies to minimize the effect of particle size distribution on the geometric quality of the printed part.


Sign in / Sign up

Export Citation Format

Share Document