A SIMULATION STUDY ON THE EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE PRINTED GEOMETRY IN SELECTIVE LASER MELTING

Author(s):  
Vaishak Ramesh Sagar ◽  
Samuel Lorin ◽  
Johan Göhl ◽  
Johannes Quist ◽  
Christoffer Cromvik ◽  
...  

Abstract Selective laser melting (SLM) process is a powder bed fusion additive manufacturing process that finds applications in aerospace and medical industries for its ability to produce complex geometry parts. As the raw material used is in powder form, particle size distribution (PSD) is a significant characteristic that influences the build quality in turn affecting the functionality and aesthetics aspects of the product. This paper investigates the effect of PSD on the printed geometry for 316L stainless steel powder, where three coupled in-house simulation tools based on Discrete Element Method (DEM), Computational Fluid Dynamics (CFD), and Structural Mechanics are employed. DEM is used for simulating the powder bed distribution based on the different powder PSD. The CFD is used as a virtual testbed to determine thermal parameters such as heat capacity and thermal conductivity of the powder bed viewed as a continuum. The values found as a stochastic function of the powder distribution is used to analyse the effect on the melted zone and deformation using Structural Mechanics. Results showed that mean particle size and PSD had a significant effect on the packing density, melt pool layer thickness, and the final layer thickness after deformation. Specifically, a narrow particle size distribution with smaller mean particle size and standard deviation produced solidified final layer thickness closest to nominal layer thickness. The proposed simulation approach and the results will catalyze in development of geometry assurance strategies to minimize the effect of particle size distribution on the geometric quality of the printed part.

2020 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Hannah G. Coe ◽  
Somayeh Pasebani

Spherical powders with single-mode (D50 = 36.31 µm), and bimodal (D50,L = 36.31 µm, D50,s = 5.52 µm) particle size distribution were used in selective laser melting of 316L stainless steel in nitrogen atmosphere at volumetric energy densities ranging from 35.7–116.0 J/mm3. Bimodal particle size distribution could provide up to 2% greater tap density than single-mode powder. For low laser power (107–178 W), where relative density was <99%, bimodal feedstock resulted in higher density than single-mode feedstock. However, at higher power (>203 W), the density of bimodal-fed components decreased as the energy density increased due to vaporizing of the fine powder in bimodal distributions. Size of intergranular cell regions did not appear to vary significantly between single-mode and bimodal specimens (0.394–0.531 µm2 at 81–116 J/mm3). Despite higher packing densities in powder feedstock with bimodal particle size distribution, the results of this study suggest that differences in conduction melting and vaporization points between the two primary particle sizes would limit the maximum achievable density of additively manufactured components produced from bimodal powder size distribution.


2017 ◽  
Vol 184 ◽  
pp. 240-247 ◽  
Author(s):  
A. Norori-McCormac ◽  
P.R. Brito-Parada ◽  
K. Hadler ◽  
K. Cole ◽  
J.J. Cilliers

Author(s):  
Massimiliano Bonesso ◽  
Pietro Rebesan ◽  
Claudio Gennari ◽  
Simone Mancin ◽  
Razvan Dima ◽  
...  

AbstractOne of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts.In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation.


2017 ◽  
Vol 64 (6) ◽  
pp. 281-287 ◽  
Author(s):  
Nur Zalikha KHALIL ◽  
Sanjay Kumar VAJPAI ◽  
Mie OTA ◽  
Kei AMEYAMA

Sign in / Sign up

Export Citation Format

Share Document