Mechanisms of Coupled Heat Transfer and Flow of High Heat Flux Pulsating Heat Pipe

Author(s):  
Wei Qu ◽  
Yantao Qu ◽  
Tongze Ma

The mechanisms of coupled heat transfer and flow are modeled to describe the looped pulsating heat pipe of high heat flux. The latent heat transfer produces the pressure difference between the heating section and cooling section. This can provide the operational driving force to overcome the total flow resistances. While the sensible heat transfer contributes more to the transferred power. The results demonstrate that the circulation flow velocity can balance the heat and mass transfers automatically. And the ratio of latent heat transfer to sensible heat transfer is within 30 percent.

2013 ◽  
Vol 589-590 ◽  
pp. 559-564
Author(s):  
Xi Bing Li ◽  
Yun Shi Ma ◽  
Xun Wang ◽  
Ming Li

As a highly efficient heat transfer component, a micro heat pipe (MHP) has been widely applied to the situations with high heat flux concentration. However, a MHPs heat transfer performance is affected by many factors, among which, working fluid inventory has great influence on the security, reliability and frost resistance of its heat transfer performance. In order to determine the appropriate working fluid inventory for grooved MHPs, this paper first analyzed the working principle, major heat transfer limits and heat flux distribution law of grooved MHPs in electronic chips with high heat flux concentration, then established a mathematic model for the working fluid inventory in grooved MHPs. Finally, with distilled water being the working fluid, a series of experimental investigations were conducted at different temperatures to test the heat transfer performances of grooved MHPs, which were perfused with different inventories and with different adiabatic section lengths. The experimental results show that when the value of α is roughly within 0.40±0.05, a grooved MHP can acquire its best heat transfer performance, and the working fluid inventory can be determined by the proposed mathematic model. Therefore this study solves the complicated problem of determining appropriate working fluid inventory for grooved MHPs.


2011 ◽  
Vol 175 ◽  
pp. 335-341
Author(s):  
Xi Bing Li ◽  
Chang Long Yang ◽  
Gong Di Xu ◽  
Wen Yuan ◽  
Shi Gang Wang

With heat flux increasing and cooling space decreasing in microelectronic and chemical products, micro heat pipe has become an ideal heat dissipation device in high heat-flux products. Through the analysis of its working principle, the factors that affect its heat transfer limits and the patterns in which copper powders are arrayed in circular cavity, this paper first established a mathematical model for the crucial factors in affecting heat transfer limits in a circular micro heat pipe with a sintered wick, i.e. a theoretical model for capillary limit, and then verified its validity through experimental investigations. The study lays a powerful theoretical foundation for designing and manufacturing circular micro heat pipes with sintered wicks.


2010 ◽  
Vol 29-32 ◽  
pp. 1686-1694
Author(s):  
Xi Bing Li ◽  
Shi Gang Wang ◽  
Jian Hua Guo ◽  
Dong Sheng Li

With heat flux increasing and cooling space decreasing in the products in microelectronics and chemical engineering, micro heat pipe has become an ideal heat radiator for products with high heat flux. Through analyzing the factors influencing the structure, strength and heat transfer limits of circular micro heat pipe with trapezium-grooved wick structure, the heat transfer models are established in this paper, including the models of viscous limit, sonic limit, entrainment limit, capillary limit, condensing limit, boiling limit, continuous flow limit and frozen startup limit. The study lays a powerful theoretical foundation for the design and manufacture of circular micro heat pipe with a trapezium-grooved wick structure.


Sign in / Sign up

Export Citation Format

Share Document