Simulation of Subcooled Flow Boiling in Manifold Microchannel Heat Sink

Author(s):  
Yang Luo ◽  
Jingzhi Zhang ◽  
Wei Li

Abstract The manifold microchannel (MMC) heat sink has become the most popular one among emerging technologies for high heat flux thermal management because of its high surface-to-volume ratio. Even though numerous numerical studies have been performed for the single-phase flow in the MMC heat sink, researches on two-phase flow boiling/condensation in this type of microchannel is seldomly reported because of its issues with flow pattern prediction. In the present work, a numerical approach involving two-phase interface capturing, phase change and solid heat conduction is conducted for the simplified MMC unit cell model. Heat and mass transfers of Lee model and interfacial heat resistance model for phase change are validated by the single bubble growth problem. Besides, both phase-change models are shown to provide good predictions against the experimental temperature database, with all of the data points falling within −5% to +20% and −5% to +10% error bands for Lee model and interfacial resistance model, respectively. Furthermore, a liquid-vapor interface region with thin thickness and accurate interface temperature can be obtained by the interfacial resistance model coupled with homogeneous nucleation-site model.

Author(s):  
Zhichuan Sun ◽  
Yang Luo ◽  
Junye Li ◽  
Wei Li ◽  
Jingzhi Zhang ◽  
...  

Abstract The manifold microchannel heat sink receives an increasing number of attention lately due to its high heat flux dissipation. Numerical investigation of boiling phenomena in manifold microchannel (MMC) heat sinks remains a challenge due to the complexity of fluid route and the limitation of numerical accuracy. In this study, a computational fluid dynamics (CFD) approach including subcooled two-phase flow boiling process and conjugate heat transfer effect is performed using a MMC unit cell model. Different from steady-state single phase prediction in MMC heat sink, this type of modeling allows for the transient simulation for two-phase interface evolution during the boiling process. A validation case is conducted to validate the heat transfer phenomenon among three phases. Besides, this model is used for the assessment of the manifold dimensions in terms of inlet and outlet widths at the mass flux of 1300 kg/m2·s. With different ratios of inlet-to-outlet area, the thermal resistances remain nearly stable.


Author(s):  
D. Bogojevic ◽  
K. Sefiane ◽  
A. J. Walton ◽  
H. Lin ◽  
G. Cummins ◽  
...  

Two-phase flow boiling in microchannels is one of the most promising cooling technologies able to cope with high heat fluxes generated by the next generation of central processor units (CPU). If flow boiling is to be used as a thermal management method for high heat flux electronics it is necessary to understand the behaviour of a non-uniform heat distribution, which is typically the case observed in a real operating CPU. The work presented is an experimental study of two-phase boiling in a multi-channel silicon heat sink with non-uniform heating, using water as a cooling liquid. Thin nickel film sensors, integrated on the back side of the heat sinks were used in order to gain insight related to temperature fluctuations caused by two-phase flow instabilities under non-uniform heating. The effect of various hotspot locations on the temperature profile and pressure drop has been investigated, with hotspots located in different positions along the heat sink. It was observed that boiling inside microchannels with non-uniform heating led to high temperature non-uniformity in transverse direction.


Author(s):  
Yang Luo ◽  
Jingzhi Zhang ◽  
Wei Li

Abstract The manifold microchannel (MMC) heat sink system has been widely used in high-heat-flux chip thermal management due to its high surface-to-volume ratio. Two-phase, three-dimensional numerical methods for subcooled flow boiling have been developed using a self-programming solver based on OpenFOAM. Four different types of manifold arrangements (Z-type, C-type, H-type and U-type) have been investigated at a fixed operational condition. The numerical results evaluate the effects of flow maldistribution caused by different manifold configurations. Before simulating the two-phase boiling flow in MIMC metamodels, single-phase liquid flow fields are performed at first to compare the flow maldistribution in microchannels. It can be concluded from the flow patterns that H-type and U-type manifolds provide a more even and a lower microchannel void fraction, which is conducive to improving the temperature uniformity and decreasing the effective thermal resistance. The simulation results also show that the wall temperature difference of H-type (0.471 K) is only about 10% of the Z-type (4.683 K). In addition, the U-type manifold configuration show the lowest average pressure drop at the inlet and outlet of the MIMC metamodel domain. However, H-type manifold also shows an impressive 59.9% decrease in pressure loss. Results indicate that both the H-type and the U-type manifolds for flow boiling in microchannels are recommended due to their better heat transfer performance and lower pressure drop when compared with Z-type and C-type.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Daniel Lorenzini ◽  
Yogendra K. Joshi

The computational fluid dynamics (CFD) modeling of boiling phenomena has remained a challenge due to numerical limitations for accurately simulating the two-phase flow and phase-change processes. In the present investigation, a CFD approach for such analysis is described using a three-dimensional (3D) volume of fluid (VOF) model coupled with a phase-change model accounting for the interfacial mass and energy transfer. This type of modeling allows the transient analysis of flow boiling mechanisms, while providing the ability to visualize in detail temperature, phase, and pressure distributions for microscale applications with affordable computational resources. Results for a plain microchannel are validated against benchmark correlations for heat transfer (HT) coefficients and pressure drop as a function of the heat flux and mass flux. Furthermore, the model is used for the assessment of two-phase cooling in microelectronics under a realistic scenario with nonuniform heat fluxes at localized regions of a silicon microchannel, relevant to the cooling layer of 3D integrated circuit (IC) architectures. Results indicate the strong effect of two-phase flow regime evolution and vapor accumulation on HT. The effects of reduced saturation pressure, subcooling, and flow arrangement are explored in order to provide insight about the underlying physics and cooling performance.


Author(s):  
Daxiang Deng ◽  
Qingsong Huang ◽  
Yanlin Xie ◽  
Wei Zhou ◽  
Xiang Huang ◽  
...  

Two-phase boiling in advanced microchannel heat sinks offers an efficient and attractive solution for heat dissipation of high-heat-flux devices. In this study, a type of reentrant copper microchannels was developed for heat sink cooling systems. It consisted of 14 parallel Ω-shaped reentrant copper microchannels with a hydraulic diameter of 781μm. Two-phase pressure drop characteristics were comprehensively accessed via flow boiling tests. Both deionized water and ethanol tests were conducted at inlet subcooling of 10°C and 40°C, mass fluxes of 125–300kg/m2·s, and a wide range of heat fluxes and vapor qualities. The effects of heat flux, mass flux, inlet subcoolings and coolants on the two-phase pressure drop were systematically explored. The results show that the two-phase pressure drop of reentrant copper microchannels generally increased with increasing heat fluxes and vapor qualities. The role of mass flux and inlet temperatures was dependent on the test coolant. The water tests presented smaller pressure drop than the ethanol ones. These results provide critical experimental information for the development of microchannel heat sink cooling systems, and are of considerable practical relevance.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Daniel Lorenzini ◽  
Yogendra Joshi

The three-dimensional (3D) stacking of integrated circuits (ICs), and emergent microelectronic technologies require low-profile cooling solutions for the removal of relatively high heat fluxes. The flow boiling of dielectric refrigerants represents a feasible alternative to such applications by providing compatibility with the electrical interconnections, relatively uniform temperature profiles, and higher heat transfer coefficients than those obtained with single phase-cooling. Despite important experimental evidence in this area has been recently reported in the literature, the modeling of such has remained in basic and limited forms due to the associated complexities with the physics of two-phase flow with phase-change. In an effort to expand the studied possibilities for the modeling of flow boiling, the present investigation compares two different phase-tracking methods for the analysis of such phenomena: the volume of fluid (VOF) and the coupled level set—volume of fluid (CLSVOF) techniques. These interface tracking and reconstruction techniques are coupled with a phase change model that accounts for the mass and energy transfer source terms to the governing equations. The geometric domain is constituted by a silicon microgap 175 μm high with a substrate thickness of 50 μm, and populated with circular pin fins of 150 μm diameter, where the heat conduction is simultaneously solved with temperature dependent properties. The flow boiling regimes and their spatial and temporal evolution are compared between both methods by maintaining the operating conditions. Results indicate that both methods provide a good capability to predict major two-phase flow regimes observed in experimental studies with these types of arrangements. However, the CLSVOF offers a sharper interface reconstruction than the standard VOF method by predicting bubble nucleation and departure mechanisms more closely to experimental observations.


Sign in / Sign up

Export Citation Format

Share Document