lee model
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
B. Chauhan ◽  
S. Kumar

We derive the off-shell nilpotent of order two and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST, and (anti-)co-BRST symmetry transformations for the Christ–Lee (CL) model in one 0 + 1 -dimension (1D) of spacetime by exploiting the (anti-)chiral supervariable approach (ACSA) to BRST formalism where the quantum symmetry (i.e., (anti-)BRST along with (anti-)co-BRST) invariant quantities play a crucial role. We prove the nilpotency and absolute anticommutativity properties of the (anti-)BRST along with (anti-)co-BRST conserved charges within the scope of ACSA to BRST formalism where we take only one Grassmannian variable into account. We also show the (anti-)BRST and (anti-)co-BRST invariances of the Lagrangian within the scope of ACSA.


Author(s):  
Prakash Gautam

A dense plasma focus is a table top machine producing a short-lived extremely popular plasma and cause fusion. Lee Model Code is a computer-based visual basic simulation package, which was successfully utilized in the plasma focus devices. The dynamics of plasma focus discharge is quite complicated, so to review and simplify the complication Lee Model couples electrical circuit with the plasma focus dynamics, radiation and therefore the thermodynamics. This enables us to simulate all of the gross focus properties. In this paper the numerical experiments are carried out to compute the current trace as a function of time for plasma focus (PF) device NX2. Results obtained by the numerical experiments are compared with the published laboratory measured data. This current fitting is completed to get the model parameters.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Zhi-Yong Zhou ◽  
Zhiguang Xiao

AbstractIn this paper, we present how the Friedrichs–Lee model could be extended to the relativistic scenario and be combined with the relativistic quark pair creation model in a consistent way. This scheme could be applied to study the “unquenched” effect of the meson spectra. As an example, if the lowest $$J^{PC}=0^{++}$$ J PC = 0 + + $$(u\bar{u}+d\bar{d})/\sqrt{2}$$ ( u u ¯ + d d ¯ ) / 2 bound state in the potential model is coupled to the $$\pi \pi $$ π π continuum, two resonance poles could be found from the scattering amplitude for the continuum states. One of them could correspond to the $$f_0(500)/\sigma $$ f 0 ( 500 ) / σ and the other probably $$f_0(1370)$$ f 0 ( 1370 ) . This scheme might shed more light on why extra states could appear in the hadron spectrum other than the prediction of the quark potential model.


2020 ◽  
Vol 1612 ◽  
pp. 012012
Author(s):  
Francesco Giacosa
Keyword(s):  

Author(s):  
Yang Luo ◽  
Jingzhi Zhang ◽  
Wei Li

Abstract The manifold microchannel (MMC) heat sink has become the most popular one among emerging technologies for high heat flux thermal management because of its high surface-to-volume ratio. Even though numerous numerical studies have been performed for the single-phase flow in the MMC heat sink, researches on two-phase flow boiling/condensation in this type of microchannel is seldomly reported because of its issues with flow pattern prediction. In the present work, a numerical approach involving two-phase interface capturing, phase change and solid heat conduction is conducted for the simplified MMC unit cell model. Heat and mass transfers of Lee model and interfacial heat resistance model for phase change are validated by the single bubble growth problem. Besides, both phase-change models are shown to provide good predictions against the experimental temperature database, with all of the data points falling within −5% to +20% and −5% to +10% error bands for Lee model and interfacial resistance model, respectively. Furthermore, a liquid-vapor interface region with thin thickness and accurate interface temperature can be obtained by the interfacial resistance model coupled with homogeneous nucleation-site model.


2020 ◽  
Vol 12 (11) ◽  
pp. 1861
Author(s):  
Ele Vahtmäe ◽  
Tiit Kutser ◽  
Birgot Paavel

Maps of submerged aquatic vegetation (SAV) are of primary importance for the sustainable management of coastal areas and serve as a basis for fundamental ecological studies. Various water column correction (WCC) models are successfully applied in clear Case-1 waters to compensate for the variable water depth effect. The performance of the WCC in less clear Case-2 waters is rarely assessed. In this study, the performance and applicability of model-based WCC algorithms in the complex Baltic Sea were analyzed. The bottom reflectance was retrieved from the Compact Airborne Spectrographic Imager (CASI) water surface reflectance by applying the Maritorena and Lee WCC algorithms. The Maritorena model retrieved bottom spectra that showed large variations in reflectance magnitudes. The Lee model was more successful in retrieving reasonable spectral magnitudes, although only in a rather narrow wavelength region (550–600 nm). Shorter and longer spectral regions were significantly overcorrected, resulting in unrealistic spectral shapes. Sensitivity analysis indicated that slight under- or overestimation of water depth and water column constituents affect retrieval of correct bottom spectra in Case-2 waters. To assess the performance of WCC models in improving the SAV quantification, the surface reflectance, as well as the retrieved bottom reflectance, were correlated with the corresponding in situ estimated SAV percent cover (%SAV). Although the quality of the Lee WCC model was not considered high, the spectral region least affected by the input parameters variations (550–600 nm) can be used for the SAV quantification. Application of the Lee model provided better results in %SAV assessment than not performing the WCC correction.


2020 ◽  
pp. 676-743
Author(s):  
Giuseppe Mussardo

The Ising model in a magnetic field is one of the most beautiful examples of an integrable model. This chapter presents its exact S-matrix and the exact spectrum of its excitations, which consist of eight particles of different masses. Similarly, it discusses the exact scattering theory behind the thermal deformation of the tricritical Ising model and the unusual features of the exact S-matrix of the non-unitary Yang–Lee model. Other examples are provided by O(n) invariant models, including the important Sine–Gordon model. It also discusses multiple poles, magnetic deformation, the E 8 Toda theory, bootstrap fusion rules, non-relativistic limits and quantum group symmetry of the Sine–Gordon model.


Sign in / Sign up

Export Citation Format

Share Document