Reprocessing Nuclear Fuel Containing Polymers

Author(s):  
Fiquet Olivier ◽  
Boivinet Raynal ◽  
Trabuc Pierre

Organic radiolysis generates enough hydrogen gas to question the safety of radioactive fuel transportation and long-term storage. A safety analysis points out the absolute necessity to get rid of all organic substances in nuclear fuel long-term storage. In the past decades, R and D activities have been producing quantities of rod fuel samples embedded in polymer resins for characterization purposes. Until recently, resin has not been removed from samples and today large sample quantities have to be reprocessed. The “STAR” nuclear facility at CEA Cadarache in France devoted to used fuel stabilization and conditioning, recently decided to implement in the hot cell a particular process to achieve the safety requirements. In order to define a versatile process, efficient for any kind of polymer, thermal treatment has been chosen over a chemical or mechanical process. The definition of this particular thermal treatment must take into account; the hot cell environment, the nuclear safety rules and the behavior of resins. A prototypic furnace has been built for study purposes and thermal cycle validation. Today, the thermal cycle has been defined in two phases as follow: First phase: pyrolysis is used to transform resin into residues and gases. A post gas treatment will be added to the furnace for total gas oxidation. Second phase: Air thermal treatment will achieve the complete residue oxidation and guarantee a hydrogen free product. The final equipment will be available in 2009 for testing and validation cycles with a radioactive free simulator before it is to be implemented in the hot cell in 2010.

2017 ◽  
Vol 153 ◽  
pp. 07035 ◽  
Author(s):  
Mikhail Ternovykh ◽  
Georgy Tikhomirov ◽  
Ivan Saldikov ◽  
Alexander Gerasimov

Energy ◽  
2019 ◽  
Vol 170 ◽  
pp. 978-985 ◽  
Author(s):  
R. Poškas ◽  
V. Šimonis ◽  
H. Jouhara ◽  
P. Poškas

2015 ◽  
Vol 51 (54) ◽  
pp. 10883-10886 ◽  
Author(s):  
Kyoko Fujita ◽  
Miki Sanada ◽  
Hiroyuki Ohno

Lectins, dissolved and stored in hydrated cholinium dihydrogen phosphate, maintained recognition and binding affinity to specific sugar chains even after thermal treatment or long-term storage.


2015 ◽  
Vol 14 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Rodney C. Ewing

Author(s):  
A. I. Vorobyov ◽  
S. V. Demyanovsky ◽  
R. G. Mudarisov ◽  
V. D. Ptashny

1981 ◽  
Vol 11 ◽  
Author(s):  
B. Allard ◽  
U. Olofsson ◽  
B. Torstenfelt ◽  
H. Kipatsi ◽  
K. Andersson

The long-lived actinides and their daughter products largely dominate the biological hazards from spent nuclear fuel already from some 300 years after the discharge from the reactor and onwards . Therefore it is essential to make reliable assessments of the geochemistry of these elements in any concept for long-term storage of spent fuel or reprocessing waste, etc.


Sign in / Sign up

Export Citation Format

Share Document