gas treatment
Recently Published Documents


TOTAL DOCUMENTS

1050
(FIVE YEARS 255)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
pp. 0734242X2110701
Author(s):  
Roland Berger ◽  
Joachim Lehner

It is a well-established fact that the quality and quantity of landfill gas (LFG) start declining after a landfill is closed to further waste intake. Conventional gas treatment and utilisation systems such as flares and gas-driven engines require a certain quality of LFG: specifically, a sufficient methane concentration. Various measures are utilised to maintain the necessary quality of LFG, including a turn-down of gas extraction rates and a shutdown of low-quality gas wells, resulting in a decline of LFG production. This, however, does not have to be the case. The low calorific value (LCV) LFG capture and treatment technology developed by e-flox and referred to in this article as ‘LCV LFG System’ can significantly increase the collection rate and the amount of treated methane in an old landfill. This article introduces such new treatment measures, describes gas capture calculation methodologies and presents actual results based on a medium-sized landfill in Germany. The study demonstrates, among other things, that the LCV LFG system can reduce the CO2 avoidance costs to roughly 10 €/tCO2eq. We present this new technology as a quick and straightforward measure of dealing with the climate issues related to methane emissions of old landfills.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiang Tang ◽  
Zhibin Hu ◽  
Zechao Tao ◽  
Dan Ye ◽  
Jau Tang

AbstractTo study the combustion process of fuel in the microwave plasma torch, we designed a butane microwave plasma device exploiting a tungsten rod as an electrode. Through analysis of the image record by high-speed camera, we found that the discharge of butane microwave plasma torch is a cyclic process at atmospheric pressure at a frequency  of around 100 Hz. During the discharge, the active particles continuously diffuse from the electrode to the outside like the bloom of the flower. Then, the variation of plasma torch of jet height and temperature with microwave power is obtained. In addition, we studied the effects of different butane flow rates on the plasma torch. The results illustrate that excessive butane will lead to carbon deposition on the electrode. All in all, this work provides a new understanding of the combustion of the microwave plasma torch, which is conducive to the further development of microwave plasma in the fields of waste gas treatment, fuel combustion, and plasma engine.


2022 ◽  
pp. 120246
Author(s):  
Minseong Lee ◽  
Gihoon Lee ◽  
Yanghwan Jeong ◽  
Woong-Jin Oh ◽  
Jeong-gu Yeo ◽  
...  

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Jafar Safarian

Hydrogen and aluminum were used to produce manganese, aluminum–manganese (AlMn) and ferromanganese (FeMn) alloys through experimental work, and mass and energy balances. Oxide pellets were made from Mn oxide and CaO powder, followed by pre-reduction by hydrogen. The reduced MnO pellets were then smelted and reduced at elevated temperatures through CaO flux and Al reductant addition, yielding metallic Mn. Changing the amount of the added Al for the aluminothermic reduction, with or without iron addition led to the production of Mn metal, AlMn alloy and FeMn alloy. Mass and energy balances were carried out for three scenarios to produce these metal products with feasible material flows. An integrated process with three main steps is introduced; a pre-reduction unit to pre-reduce Mn ore, a smelting-aluminothermic reduction unit to produce metals from the pre-reduced ore, and a gas treatment unit to do heat recovery and hydrogen looping from the pre-reduction process gas. It is shown that the process is sustainable regarding the valorization of industrial waste and the energy consumptions for Mn and its alloys production via this process are lower than current commercial processes. Ferromanganese production by this process will prevent the emission of about 1.5 t CO2/t metal.


2021 ◽  
Vol 6 (1(62)) ◽  
pp. 43-47
Author(s):  
Olena Mykhailovska ◽  
Mykola Zotsenko

The object of research is the basis of the compressor equipment of the complex gas treatment plant at the Abazivka field and the strengthening of the base soils with soil-cement elements, which are proposed to be arranged with the use of drilling technology. The research area is located on the territory of the current Abazivka Integrated Gas Preparation, near the village of Bugaivka, Poltava region, Ukraine. Abazivka Integrated Gas Preparation receives products from wells in Abazivka and Sementsivske deposits. It is proposed to carry out the reconstruction of Integrated Gas Preparation, which includes strengthening the foundation of the compressor model C1004-JGT/2-1 manufactured by «Propak» (Alberta, Canada). The amplitudes of oscillations of the compressor foundation were determined at a speed of 1400 rpm at the appropriate site with geological conditions. The magnitudes of oscillations and subsidence of the compressor foundation of the Abazivka complex of complex gas treatment were investigated experimentally. When determining the amplitudes of oscillations of the compressor foundations, only the amplitudes of oscillations in the direction parallel to the sliding of the pistons were calculated, and the influence of the vertical component of the perturbing forces was not taken into account. It is established that the amplitude of horizontal-rotational oscillations of the upper face of the compressor foundation relative to the horizontal axis exceeds the maximum allowable. It is substantiated that soil cement is a sufficiently strong and waterproof material that can be used to strengthen the base during the construction of equipment foundations. The possibility of application of the technology of application of soil-cement piles, made by brown-mixing technology for strengthening the base under the foundation of the compressor, is described and investigated. It is proposed to reinforce the base with rows of soil-cement elements, which will increase the modulus of deformation of the base, which is represented by loam, light to 14.3 MPa. In the case of strengthening the base, the amplitude of horizontal-rotational oscillations of the upper face of the compressor foundation is much less than the maximum allowable 0.1 mm. The subsidence of the foundation at reinforcement of the base, which does not exceed the maximum allowable value, is determined. Soil-cement elements are proposed to be arranged according to the drilling technology.


Author(s):  
I.A. Volchyn ◽  
O.M. Kolomiets ◽  
S.V. Mezin ◽  
A.O. Yasynetskyi

The need to reduce emissions of pollutants, in particular nitrogen oxides, as required by regulations in Ukraine, requires the use of modern technologies and methods for waste gas treatment at industrial enterprises. This is especially true of thermal power plants, which are powerful sources of nitrogen oxide emissions. The technological part of the wet or semi-dry method of purification is the area for the oxidation of nitrogen oxides to obtain easily soluble compounds. The paper presents the results of a study of the process of ozone oxidation of nitrogen oxides in a chemical reactor. Data for the analysis of the process were obtained by performing physical experiments on a laboratory installation and related calculations on a mathematical model. Studies of the oxidation process have shown that the required amount of ozone depends not only on the content of nitrogen monoxide, but also on the content of nitrogen dioxide. The process of conversion of nitrogen monoxide to a satisfactory level occurs at the initial value of the molar ratio of ozone to nitrogen monoxide in the range of 1.5…2. The conversion efficiency of nitrogen monoxide reaches 90% at a gas temperature less than 100 °C. To achieve high conversion efficiency at gas temperatures above 100 °C, it is necessary to increase the initial ozone content when the molar ratio exceeds 2. The analysis shows that the conversion efficiency of nitric oxide largely depends on the residence time of the gas mixture in the reaction zone. Due to lack of time under certain conditions, the efficiency decreases by approximately 46%. To increase it, it is necessary to accelerate the rate of oxidation reactions due to better mixing of gases by turbulence of the flow in the oxidizing reactor. Bibl. 6, Fig. 6, Tab. 3.


2021 ◽  
Author(s):  
Waleed Alhazmi ◽  
Maher Alabdullatif

Abstract This paper presents an unparalleled engineering assessment conducted to evaluate the feasibility of pre-investing in O2 enrichment technology, with the purpose of increasing the processing capacities of conventional air-based sulfur recovery units (SRUs). Ultimately, the goal is to minimize the overall number of required SRUs for a greenfield gas plant and, consequently, capture a significant cost-avoidance opportunity. The technology review revealed that a high-level O2 enrichment can double the processing capacity of air-based SRU, depending on the H2S content in acid gas. As H2S mole fraction in feed increases, the debottlenecking capability increases. For the project under assessment, the processing capacity of air-based SRUs showed a maximum increase of 80%. On the contrary, operating with high O2 levels, will elevate SRU reaction furnace temperature, and mandates installing high-intensity burners, along with special control and ESD functions, to manage potential risk and ensure safe operation. Additionally, the liquid handling section of SRUs (condensers, collection vessels, degassing vessels, sulfur storage tanks) should be enlarged to accommodate more sulfur production. Typically, the enriched oxygen can be supplied from air separation units (ASUs), which entails significant capital cost. Apart from these special design considerations, there are several advantages for adopting this technology. Oxygen enrichment removes significant nitrogen volumes, which reduces loads on Claus, tail gas treatment, and thermal oxidizer units. Hence, lower capital cost for new plants is acquired due to equipment size reduction. In addition, higher HP steam production and less fuel gas consumption are achieved. Conventionally, O2 enrichment technology is employed in the initial design stage or used to retrofit operating SRUs facilities. However, it is unique to consider O2 enrichment-design requirements as part of new air-based SRUs design for phased program development. The objective is to enable smooth transition to fully O2 enrichment operated SRUs at a later phase of the project without the need for any design modification. This exceptional pre-investment strategy has resulted into reducing the required number of SRUs at phase II from eight to five units; and accordingly, a significant cost avoidance was captured.


Sign in / Sign up

Export Citation Format

Share Document