The Biomechanical Analysis of a Double Bundle Posterior Cruciate Ligament Reconstruction Using Robotic Technology

1999 ◽  
Author(s):  
Marsie A. Janaushek ◽  
Savio L.-Y. Woo ◽  
Akihiro Kanamori ◽  
Tracy M. Vogrin ◽  
Masayoshi Yagi ◽  
...  

Abstract The PCL consists of two primary bundles, the anterolateral (AL) and posteromedial (PM). The AL bundle is larger, stiffer, and has a higher ultimate load (Harner, 1995), and has been the focus of PCL replacement surgery (Clancy, 1983). However, clinical outcomes of PCL reconstruction have been unsatisfactory (Lipscomb, 1993); which has led to the question of the advancement of a double bundle procedure in hopes to more accurately reproduce the PCL (Clancy, 1998). It was therefore the objective of this study to evaluate the biomechanics of a double bundle PCL reconstruction (PCL-2), and compare these results with those obtained for the intact knee as well as a single bundle PCL reconstruction (PCL-1). To study this, a robotic/universal force-moment sensor (UFS) testing system which measures the multiple degree of freedom (DOF) knee kinematics determines the in situ force in the ligaments (or replacement grafts) in response to external loading conditions was utilized. The hypothesis was that PCL-2 would improve knee kinematics and in situ forces to those of the intact knee throughout the range of knee flexion as compared to PCL-1.

2005 ◽  
Vol 33 (3) ◽  
pp. 360-369 ◽  
Author(s):  
Jon K. Sekiya ◽  
Marcus J. Haemmerle ◽  
Kathryne J. Stabile ◽  
Tracy M. Vogrin ◽  
Christopher D. Harner

Background Failure to address both components of a combined posterior cruciate ligament and posterolateral corner injury has been implicated as a reason for abnormal biomechanics and inferior clinical results. Hypothesis Combined double-bundle posterior cruciate ligament and posterolateral corner reconstruction restores the kinematics and in situ forces of the intact knee ligaments. Study Design Controlled laboratory study Methods Ten fresh-frozen human cadaveric knees were tested using a robotic testing system through sequential cutting and reconstructing of the posterior cruciate ligament and posterolateral corner. The knees were subjected to a 134-N posterior tibial load and a 5-N.m external tibial torque at multiple flexion angles. The double-bundle posterior cruciate ligament reconstruction was performed using Achilles and semitendinosus tendons. The posterolateral corner reconstruction consisted of reattaching the popliteus tendon to its femoral origin and reconstructing the popliteofibular ligament with a gracilis tendon. Results Under the posterior load, the combined reconstruction reduced posterior translation to within 1.2 - 1.5 mm of the intact knee. The in situ forces in the posterior cruciate ligament grafts were significantly less than those in the native posterior cruciate ligament at all angles except full extension. Conversely, the forces in the posterolateral corner grafts were significantly higher than those in the native structures at all angles. Under the external torque with the combined reconstruction, external rotation as well as in situ forces in the posterior cruciate ligament and posterolateral corner grafts were not different from the intact knee. Conclusions A combined posterior cruciate ligament and posterolateral corner reconstruction can restore intact knee kinematics at time zero. In situ forces in the intact posterior cruciate ligament and posterolateral corner were not reproduced by the reconstruction; however, the posterolateral corner reconstruction reduced the loads experienced by the posterior cruciate ligament grafts. Clinical Relevance By addressing both structures of this combined injury, this technique restores native kinematics under the applied loads at fixed flexion angles and demonstrates load sharing among the grafts creating a potentially protective effect against early failure of the posterior cruciate ligament grafts but with increased force in the posterolateral corner construct.


1998 ◽  
Vol 26 (5) ◽  
pp. 669-673 ◽  
Author(s):  
Christopher D. Harner ◽  
Jürgen Höher ◽  
Tracy M. Vogrin ◽  
Gregory J. Carlin ◽  
Savio L-Y. Woo

To investigate the effect of simulated contraction of the popliteus muscle on the in situ forces in the posterior cruciate ligament and on changes in knee kinematics, we studied 10 human cadaveric knees (donor age, 58 to 89 years) using a robotic manipulator/universal force moment sensor system. Under a 110-N posterior tibial load (simulated posterior drawer test), the kinematics of the intact knee and the in situ forces in the ligament were determined. The test was repeated with the addition of a 44-N load to the popliteus muscle. The posterior cruciate ligament was then sectioned and the knee was subjected to the same tests. The additional popliteus muscle load significantly reduced the in situ forces in the ligament by 9% to 36% at 90° and 30° of flexion, respectively. No significant effects on posterior tibial translation of the intact knee were found. However, in the ligament-deficient knee, posterior tibial translation was reduced by up to 36% of the translation caused by ligament transection. A coupled internal tibial rotation of 2° to 4° at 60° to 90° of knee flexion was observed in both the intact and ligament-deficient knees when the popliteus muscle load was added. Our results indicate that the popliteus muscle shares the function of the posterior cruciate ligament in resisting posterior tibial loads and can contribute to knee stability when the ligament is absent.


2001 ◽  
Vol 29 (6) ◽  
pp. 771-776 ◽  
Author(s):  
Jürgen Höher ◽  
Akihiro Kanamori ◽  
Jennifer Zeminski ◽  
Freddie H. Fu ◽  
Savio L-Y. Woo

Ten cadaveric knees (donor ages, 36 to 66 years) were tested at full extension, 15°, 30°, and 90° of flexion under a 134-N anterior tibial load. In each knee, the kinematics as well as in situ force in the graft were compared when the graft was fixed with the tibia in four different positions: full knee extension while the surgeon applied a posterior tibial load (Position 1), 30° of flexion with the tibia at the neutral position of the intact knee (Position 2), 30° of flexion with a 67-N posterior tibial load (Position 3), and 30° of flexion with a 134-N posterior tibial load (Position 4). For Positions 1 and 2, the anterior tibial translation and the in situ forces were up to 60% greater and 36% smaller, respectively, than that of the intact knee. For Position 3, knee kinematics and in situ forces were closest to those observed in the intact knee. For Position 4, anterior tibial translation was significantly decreased by up to 2 mm and the in situ force increased up to 31 N. These results suggest that the position of the tibia during graft fixation is an important consideration for the biomechanical performance of an anterior cruciate ligament-reconstructed knee.


1999 ◽  
Vol 8 (4) ◽  
pp. 260-278 ◽  
Author(s):  
Christopher D. Harner ◽  
Tracy M. Vogrin ◽  
Savio L-Y. Woo

This article discusses the anatomy and biomechanics of the posterior cruciate ligament (PCL) and PCL reconstructions and their implications for clinical management of PCL injuries. The PCL consists of two functional components, the anterolateral and posteromedial, based on their reciprocal tensioning patterns. The anterolateral has been the focus of single-bundle PCL reconstructions. Recent biomechanical studies have indicated that the posteromedial bundle also plays an important role, and double-bundle PCL reconstructions have also been proposed. The PCL works closely with the posterolateral structures in providing posterior knee stability. The effects of several surgical variables, including graft fixation, associated injuries, and tunnel placement, that can significantly affect the outcome of PCL reconstruction are discussed. With improved knowledge of the PCL, new reconstructive techniques are being developed, offering the potential of more closely replicating the anatomy and biomechanics of the normal PCL and improving clinical outcomes of PCL injuries.


2016 ◽  
Vol 30 (06) ◽  
pp. 523-531 ◽  
Author(s):  
Jeffrey Milles ◽  
Ferris Pfeiffer ◽  
James Stannard ◽  
Patrick Smith ◽  
Mauricio Kfuri ◽  
...  

AbstractNo surgical technique recreates native posterior cruciate ligament (PCL) biomechanics. We compared the biomechanics of five different PCL reconstruction techniques versus the native PCL. Cadaveric knees (n = 20) were randomly assigned to one of five reconstruction techniques: Single bundle all-inside arthroscopic inlay, single bundle all-inside suspensory fixation, single bundle arthroscopic-assisted open onlay (SB-ONL), double bundle arthroscopic-assisted open inlay (DB-INL), and double bundle all-inside suspensory fixation (DB-SUSP). Each specimen was potted and connected to a servo-hydraulic load frame for testing in three conditions: PCL intact, PCL deficient, and PCL reconstructed. Testing consisted of a posterior force up to 100 N at a rate of 1 N/s at four knee flexion angles: 10, 30, 60, and 90 degrees. Three material properties were measured under each condition: load to 5 mm displacement, maximal displacement, and stiffness. Data were normalized to the native PCL, compared across techniques, compared with all PCL-intact knees and to all PCL-deficient knees using one-way analysis of variance. For load to 5 mm displacement, intact knees required significantly (p < 0.03) more load at 30 degrees of flexion than all reconstructions except the DB-SUSP. At 60 degrees of flexion, intact required significantly (p < 0.01) more load than all others except the SB-ONL. At 90 degrees, intact, SB-ONL, DB-INL, and DB-SUSP required significantly more load (p < 0.05). Maximal displacement testing showed the intact to have significantly (p < 0.02) less laxity than all others except the DB-INL and DB-SUSP at 60 degrees. At 90 degrees the intact showed significantly (p < 0.01) less laxity than all others except the DB-SUSP. The intact was significantly stiffer than all others at 30 degrees (p < 0.03) and 60 degrees (p < 0.01). Finally, the intact was significantly (p < 0.05) stiffer than all others except the DB-SUSP at 90 degrees. No technique matched the exact properties of the native PCL, but the double bundle reconstructions more closely recreated the native biomechanics immediately after implantation, with the DB-SUSP coming closest to the native ligament. This study contributes new data for consideration in PCL reconstruction technique choice.


2019 ◽  
Vol 47 (13) ◽  
pp. 3195-3202 ◽  
Author(s):  
Jan-Hendrik Naendrup ◽  
Thomas R. Pfeiffer ◽  
Calvin Chan ◽  
Kanto Nagai ◽  
João V. Novaretti ◽  
...  

Background: Meniscal ramp lesions are possible concomitant injuries in cases of anterior cruciate ligament (ACL) deficiency. Although recent studies have investigated the influence of ramp lesions on knee kinematics, the effect on the ACL reconstruction graft remains unknown. Purpose/Hypothesis: The purpose was to determine the effects of ramp lesion and ramp lesion repair on knee kinematics, the in situ forces in the ACL, and bony contact forces. It was hypothesized that ramp lesions will significantly increase in situ forces in the native ACL and bony contact forces and that ramp lesion repair will restore these conditions comparably with those forces of the intact knee. Study Design: Controlled laboratory study. Methods: Investigators tested 9 human cadaveric knee specimens using a 6 degrees of freedom robotic testing system. The knee was continuously flexed from full extension to 90° while the following loads were applied: (1) 90-N anterior load, (2) 5 N·m of external-rotation torque, (3) 134-N anterior load + 200-N compression load, (4) 4 N·m of external-rotation torque + 200-N compression load, and (5) 4 N·m of internal-rotation torque + 200-N compression load. Loading conditions were applied to the intact knee, a knee with an arthroscopically induced 25-mm ramp lesion, and a knee with an all-inside repaired ramp lesion. In situ forces in the ACL, bony contact forces in the medial compartment, and bony contact forces in the lateral compartment were quantified. Results: In response to all loading conditions, no differences were found with respect to kinematics, in situ forces in the ACL, and bony contact forces between intact knees and knees with a ramp lesion. However, compared with intact knees, knees with a ramp lesion repair had significantly reduced anterior translation at flexion angles from full extension to 40° in response to a 90-N anterior load ( P < .05). In addition, a significant decrease in the in situ forces in the ACL after ramp repair was detected only for higher flexion angles when 4 N·m of external-rotation torque combined with a 200-N compression load ( P < .05) and 4 N·m of internal-rotation torque combined with a 200-N compression load were applied ( P < .05). Conclusion: In this biomechanical study, ramp lesions did not significantly affect knee biomechanics at the time of surgery. Clinical Relevance: From a biomechanical time-zero perspective, the indications for ramp lesion repair may be limited.


2018 ◽  
Vol 18 (08) ◽  
pp. 1840025
Author(s):  
NA GUO ◽  
YANSONG QI ◽  
BIAO YANG ◽  
ZHONGHAO HAN ◽  
LEI HU ◽  
...  

The main purpose of our study was to evaluate the biomechanics of different posterior cruciate ligament (PCL) reconstruction techniques. Seven fresh cadaver knees were collected. A 6-DOF robot arm was used to test the biomechanical parameters, including the posterior stability, the lateral stability and the rotation stability of different PCL reconstruction techniques. Each group was tested at the knee flexion of 0, 30[Formula: see text], 60[Formula: see text], 90[Formula: see text] and 120[Formula: see text], under the following conditions respectively: a posterior force of 134[Formula: see text]N, an internal and external rotation torque of 5[Formula: see text][Formula: see text], a varus and valgus torque of 10[Formula: see text][Formula: see text], and a combination of 100[Formula: see text]N posterior force and 5[Formula: see text][Formula: see text] external rotation torque. The posterior tibia translation and the rotational angle of the 4-tunnel double-bundle PCL reconstruction group were significantly lower than that of 3-tunnel double-bundle group and the single-bundle group; the posterior tibia translation valgus–varus-angle were lower at some specified flexion angle. No statistical difference was found between the anatomic 4-tunnel bundle group and the intact knee group concerning the posterior tibia translation, the rotational angle, and the valgus–varus-angle. This study showed that the biomechanics of PCL of 4-tunnel double-bundle reconstruction was closer to the intact knees than the other two reconstruction methods.


2009 ◽  
Vol 37 (5) ◽  
pp. 962-969 ◽  
Author(s):  
Hemanth R. Gadikota ◽  
Jong Keun Seon ◽  
Michal Kozanek ◽  
Luke S. Oh ◽  
Thomas J. Gill ◽  
...  

Background Anatomic double-bundle reconstruction has been thought to better simulate the anterior cruciate ligament anatomy. It is, however, a technically challenging procedure, associated with longer operation time and higher cost. Hypothesis Double-bundle anterior cruciate ligament reconstruction using a single femoral and tibial tunnel can closely reproduce intact knee kinematics. Study Design Controlled laboratory study. Methods Eight fresh-frozen human cadaveric knee specimens were tested using a robotic testing system to investigate the kinematic response of the knee joint under an anterior tibial load (130 N), simulated quadriceps load (400 N), and combined torques (5 N·m valgus and 5 N·m internal tibial torques) at 0°, 15°, 30°, 60°, and 90° of flexion. Each knee was tested sequentially under 4 conditions: (1) anterior cruciate ligament intact, (2) anterior cruciate ligament deficient, (3) single-bundle anterior cruciate ligament reconstruction using quadrupled hamstring tendon, and (4) single-tunnel—double-bundle anterior cruciate ligament reconstruction using the same tunnels and quadrupled hamstring tendon graft as in the single-bundle anterior cruciate ligament reconstruction. Results Single-tunnel—double-bundle anterior cruciate ligament reconstruction more closely restored the intact knee kinematics than single-bundle anterior cruciate ligament reconstruction at low flexion angles (≤30°) under the anterior tibial load and simulated muscle load (P < .05). However, single-tunnel—double-bundle anterior cruciate ligament reconstruction overconstrained the knee joint at high flexion angles (≥60°) under the anterior tibial load and at 0° and 30° of flexion under combined torques. Conclusion This double-bundle anterior cruciate ligament reconstruction using a single tunnel can better restore anterior tibial translations to the intact level compared with single-bundle anterior cruciate ligament reconstruction at low flexion angles, but it overconstrained the knee joint at high flexion angles. Clinical Relevance This technique could be an alternative for both single-bundle and double-tunnel—double-bundle anterior cruciate ligament reconstructions to reproduce intact knee kinematics and native anterior cruciate ligament anatomy.


2000 ◽  
Vol 28 (2) ◽  
pp. 144-151 ◽  
Author(s):  
Christopher D. Harner ◽  
Marsie A. Janaushek ◽  
Akihiro Kanamori ◽  
Masayoshi Yagi ◽  
Tracy M. Vogrin ◽  
...  

The objective of this study was to experimentally evaluate a single-bundle versus a double-bundle posterior cruciate ligament reconstruction by comparing the resulting knee biomechanics with those of the intact knee. Ten human cadaveric knees were tested using a robotic/universal force-moment sensor testing system. The knees were subjected to a 134-N posterior tibial load at five flexion angles. Three knee conditions were tested: 1) intact knee, 2) single-bundle reconstruction, and 3) double-bundle reconstruction. Posterior tibial translation of the intact knee ranged from 4.9 2.7 mm at 90° to 7.2 1.5 mm at full extension. After the single-bundle reconstruction, posterior tibial translation increased to 7.3 3.9 mm and 9.2 2.8 mm at 90° and full extension, respectively, while the corresponding in situ forces in the graft were up to 44 19 N lower than those in the intact ligament. Conversely, with double-bundle reconstruction, the posterior tibial translation did not differ significantly from the intact knee at any flexion angle tested. This reconstruction also restored in situ forces more closely than did the single-bundle reconstruction. These data suggest that a double-bundle posterior cruciate ligament reconstruction can more closely restore the biomechanics of the intact knee than can the single-bundle reconstruction throughout the range of knee flexion.


Sign in / Sign up

Export Citation Format

Share Document