popliteus muscle
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Anna Jeon ◽  
Ye-Gyung Kim ◽  
Youngjoo Sohn ◽  
Je-Hun Lee

Introduction. The aim of this study was to investigate the nerve and artery supply and the tibial attachment of the popliteus muscle using anatomical methods. Methods. Forty-four nonembalmed and embalmed extremities were dissected for this study. To measure the attachment area of the popliteus, the most prominent points of the medial epicondyle of the femur and the medial malleolus of the tibia were identified before dissection. A line connecting these two prominent points was used as the reference line, with the most prominent point of the medial epicondyle of the femur as the starting point. This study also investigated the area where the popliteus attaches to the bone and the points where nerves and arteries enter the popliteus muscle when it is divided into three equal parts in the coronal plane. Results. The mean length of the reference line was 34.6 ± 2.1   cm . The origin of the popliteus was found to be at a distance of 16.6% to 35.2% on the tibial bone from the proximal region. The popliteus was innervated by only the tibial nerve in 90% of the cases and by the tibial and the sciatic nerves in the remaining 10% of the cases. The inferior medial genicular artery and the posterior tibial artery supplied blood to the popliteus in 90% and 65% of the cases, respectively. When the popliteus muscle was divided into three equal parts in the coronal plane, the nerve and the artery were found to enter the muscle belly in zones II and III and zones I and II in 92% and 98% of the specimens, respectively. Discussion. The anatomical investigation of the popliteus in this study will help identify patients with clinically relevant syndromes.


Author(s):  
Jacobo Rodríguez‐Sanz ◽  
Albert Pérez‐Bellmunt ◽  
Carlos López‐de‐Celis ◽  
Cesar Hidalgo‐García ◽  
Shane L. Koppenhaver ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łukasz Olewnik ◽  
Robert F. LaPrade ◽  
Friedrich Paulsen ◽  
Bartosz Gonera ◽  
Konrad Kurtys ◽  
...  

AbstractThe purpose of this study was to characterize the morphological variations in the proximal attachments and create an accurate classification of the PPM for use in planning surgical procedures in this area, for evaluating radiological imaging and rehabilitation. One hundred and thirty-four lower limbs of body donors (52 woman and 82 man) fixed in 10% formalin solution were examined. The popliteus muscle was present in all 134 limbs. Four main types were identified with subtypes. The most common type was Type I (34.3%), characterized by a single tendon in the popliteus sulcus. Type II (30.6%) characterized by a main tendon in the popliteus sulcus and accessory bands. This type was divided into five subtypes (A–E) based on presence of specific accessory bands. Type III (15.3%) was characterized by two tendons in the popliteal sulcus. Type IV (19.4%) was characterized by two tendons in the popliteus sulcus and additional bands. This type was also divided into five subtypes (A–E) based on presence of specific accessory bands. The popliteofibular ligament was present in 90.3% of cases. A new classification based on a proximal attachment is proposed. The popliteus tendon is characterized by a very high morphological variability, which can affect posterolateral knee stability and the natural rotation of the tibia. Such a classification system may be useful for clinicians performing medical procedures within the knee joint, including orthopedic surgeons.


2021 ◽  
Vol 76 ◽  
pp. 102751
Author(s):  
Masahide Yagi ◽  
Hiroshige Tateuchi ◽  
Mizuki Kuriu ◽  
Noriaki Ichihashi

2021 ◽  
Author(s):  
WenBin Jiang ◽  
Shi-Zhu Sun ◽  
Ting-Wei Song ◽  
Chan Li ◽  
Wei Tang ◽  
...  

Abstract Background:The popliteal muscle-tendon complex (PMTC) belongs to the deep structure of the posterolateral complex (PLC) of human knee, which plays an important role in the posterolateral stability of the knee joint. At present, the anatomical relationship between the popliteal muscle and its adjacent structures remains controversial, especially the posterior cruciate ligament (PCL) and popliteal muscle. The revealation of anatomical connection between the popliteus muscle and its deep structures could provide an anatomical basis for the reconstruction of the PLC injury.Methods: To observe and analyze the relationship between popliteal muscle and the PCL, posterior meniscofemoral ligament (PMFL), lateral meniscus and articular capsule (AC). The dissection of 7 cases of adult human knee joint fixed with formalin, and 9 cases of sagittal P45 plastinated section of the knee joint were involved in this study. Results: For the popliteal muscle, the anatomical dissection showed that at the posterior edge of the platform of the lateral condyle of the tibia, at the tendon-muscle transition, from medial to lateral, separately sent out: dense connective tissue to connect with the PCL, dense fiber bundles to connect with the PMFL, and dense connective tissue band to connect the lateral meniscus. Meanwhile, the results of the P45 section revealed that the popliteal muscle fascia ran superiorly over the posterior edge of the tibialintercondylar eminence, andturned forward to be integrated into the PCL. Laterally, near the posterior edge of the lateral tibial plateau, the popliteal tendon penetrates through the articular capsule, where two dense fiberous bundleswere given off upwards by the popliteal tendon: one was the ventral fiber bundle,which ran superiorly over the posterior edge of the tibial plateau and then moved forwards to connect with the lateral meniscus; the dorsal fibersbundle ascended directly and participated in the AC.Conclusion: Popliteus muscle was connected with PCL, AC, lateral meniscus, and PMFL via the dense connective tissues near its tendon-muscle transition.


The Knee ◽  
2020 ◽  
Vol 27 (2) ◽  
pp. 308-314
Author(s):  
Addison Wood ◽  
Morgan Boren ◽  
Taylor Dodgen ◽  
Russell Wagner ◽  
Rita M. Patterson

2020 ◽  
Vol 49 (7) ◽  
pp. 1127-1133
Author(s):  
Lukas B. Moser ◽  
Ramin Mandegaran ◽  
Silvan Hess ◽  
Felix Amsler ◽  
Helmut Rasch ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shouwen Su ◽  
Yunxiang Lu ◽  
Yuxian Chen ◽  
Zhiyong Li

Abstract Background Cyamella,the sesamoid bones of the popliteus muscle, are rare in humans. Snapping knee is an uncommon problem which can be difficult to diagnose. Case presentation In this case, we report a 24-year-old male with snapping knee caused by symptomatic cyamella in the popliteus tendon. A large cyamella was identified upon surgery and was removed. Postoperatively, the patient had immediate relief of preoperative symptoms, and there were no signs of recurrence after 1 years of follow-up. Conclusions Although not previously suggested, symptomatic cyamella in the popliteus tendon should be considered as part of the differential diagnosis of the snapping knee.


Sign in / Sign up

Export Citation Format

Share Document