Durability and Damage Development in Woven Ceramic Matrix Composites Under Tensile and Fatigue Loading at Room and Elevated Temperatures

1999 ◽  
Author(s):  
Anwarul Haque ◽  
Md. M. Rahman ◽  
Hisham T. Mohamed ◽  
Hassan Mahfuz ◽  
Uday K. Vaidya ◽  
...  

Abstract This paper investigates the damage development in SiC/SiNC woven composites under tensile and cyclic loading both at room and elevated temperatures. The ultimate strength, failure strain, proportional limit and modulus data at a temperature range of 23°C–1380°C are generated. The tensile strength and the modulus of SiC/SiNC woven composites have been observed to decrease insignificantly with increased temperatures beyond the linear portion of the stress/strain plot. The stress/strain plot shows a pseudo-yield point at 25% of the failure strain (εf) which indicates damage initiation in the form of matrix cracking. The evolution of damage beyond 0.25 εf both at room and elevated temperature comprises of multiple matrix cracking, interfacial debonding and fiber pullout. Although the nature of the stress/strain plot shows damage-tolerant behavior under static loading both at room and elevated temperature, the life expectancy of SiC/SiNC composites degrades significantly under cyclic loading at elevated temperature. This is mostly due to the interactions of fatigue damage caused by the mechanically induced plastic strain and the damage developed by the creep strain. The in situ damage evolutions are monitored by acoustic event parameters, ultrasonic C-scan and stiffness degradation.

2000 ◽  
Vol 122 (4) ◽  
pp. 394-401 ◽  
Author(s):  
A. Haque ◽  
M. Rahman

This paper investigates the damage development in SiC/SiNC woven composites under tensile and cyclic loading both at room and elevated temperatures. The ultimate strength, failure strain, proportional limit, and modulus data at a temperature range of 23°C–1250°C are generated. The tensile strength of SiC/SiNC woven composites has been observed to increase with increased temperatures up to 1000°C. The stress/strain plot shows a pseudo-yield point at 25 percent of the failure strain εf, which indicates damage initiation in the form of matrix cracking. The evolution of damage above 0.25 εf both at room and elevated temperature comprises of multiple matrix cracking, interfacial debonding, and fiber pullout. Although the nature of the stress/strain plot shows damage-tolerant behavior under static loading both at room and elevated temperature, the life expectancy of SiC/SiNC composites degrades significantly under cyclic loading at elevated temperature. This is mostly due to the interactions of fatigue damage caused by the mechanically induced plastic strain and the damage developed by the creep strain. The in-situ damage evolutions are monitored by acoustic event parameters, ultrasonic C-scan, and stiffness degradation. Rate equations for modulus degradation and fatigue life prediction of ceramic matrix composites both at room and elevated temperatures are developed. These rate equations are observed to show reasonable agreement with experimental results. [S0094-4289(00)02304-5]


2021 ◽  
Author(s):  
John Montesano

The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lace of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature of fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.


2021 ◽  
Author(s):  
John Montesano

The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lace of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature of fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.


Author(s):  
Ragav P. Panakarajupally ◽  
Joseph Elrassi ◽  
K. Manigandan ◽  
Yogesh P. Singh ◽  
Gregory N. Morscher

Abstract Electrical resistance has become a technique of interest for monitoring SiC-based ceramic composites. The typical constituents of SiC fiber-reinforced SiC matrix composites, SiC, Si and/or C, are semi-conducive to some degree resulting in the fact that when damage occurs in the form of matrix cracking or fiber breakage, the resistance increases. For aero engine applications, SiC fiber reinforced SiC, sometimes Si-containing, matrix with a BN interphase are often the main constituents. The resistivity of Si and SiC is highly temperature dependent. For high temperature tests, electrical lead attachment must be in a cold region which results in strong temperature effects on baseline measurements of resistance. This can be instructive as to test conditions; however, there is interest in focusing the resistance measurement in the hot section where damage monitoring is desired. The resistivity of C has a milder temperature dependence than that of Si or SiC. In addition, if the C is penetrated by damage, it would result in rapid oxidation of the C, presumably resulting in a change in resistance. One approach considered here is to insert carbon “rods” in the form of CVD SiC monofilaments with a C core to try and better sense change in resistance as it pertains to matrix crack growth in an elevated temperature test condition. The monofilaments were strategically placed in two non-oxide composite systems to understand the sensitivity of ER in damage detection at room temperature as well as elevated temperatures. Two material systems were considered for this study. The first composite system consisted of a Hi-Nicalon woven fibers, a BN interphase and a matrix processed via polymer infiltration and pyrolysis (PIP) which had SCS-6 monofilaments providing the C core. The second composite system was a melt-infiltrated (MI) pre-preg laminate which contained Hi-Nicalon Type S fibers with BN interphases with SCS-Ultra monofilaments providing the C core. The two composite matrix systems represent two extremes in resistance, the PIP matrix being orders of magnitude higher in resistance than the Si-containing pre-preg MI matrix. Single notch tension-tension fatigue tests were performed at 815°C to stimulate crack growth. Acoustic emission (AE) was used along with electrical resistance (ER) to monitor the damage initiation and progression during the test. Post-test microscopy was performed on the fracture specimen to understand the oxidation kinetics and carbon recession length in the monofilaments.


2007 ◽  
Vol 15 (7) ◽  
pp. 521-533
Author(s):  
S. King ◽  
G. Stewart ◽  
A.T. McIlhagger ◽  
J.P. Quinn

Interest in 3D woven carbon fibre composites has increased within industries such as aerospace, automotive and marine, due to their high strength to weight ratio, their increased tailorability and their capacity to be manufactured into near net shape preforms, thereby reducing parts count, assembly time, labour intensity and costs. It is vital that critical areas of concern such as damage (and in particular damage initiation and development) are studied and understood, thereby reducing the limiting factors to their acceptance. The damage initiation and subsequent intervals of development for ILSS (Interlaminar Shear Strength) were determined experimentally. Particular focus is paid to the significance of binder edge and binder middle testing and the influence of through-the-thickness (T-T-T) reinforcement in relation to damage types and development. Control samples for binder edge and binder middle loading locations were tested to failure as a means of determining an average point of failure, allowing the generation of testing intervals. The performance and architecture of samples from each incremental interval were characterised using a combination of graphical analysis and optical microscopy with the aid of dye-penetrant to highlight fibre damage and matrix cracking. Samples displayed specific damage initiation points, thus allowing the generation of a damage guide relating to applied force. In addition, the results imply that a relationship exists between the location of applied load and subsequent damage, thus showing the significant influence played by the T-T-T binder loading location on damage development within 3D woven carbon fibre composites. Some of the preliminary data shown in this paper was presented at IMC23 at the University of Ulster, UK in August 2006 and at Texcomp 8 in Nottingham, UK October 2006.


Sign in / Sign up

Export Citation Format

Share Document