carbon fibre composites
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 69)

H-INDEX

41
(FIVE YEARS 7)

Author(s):  
Rachael C Tighe ◽  
Jonathon Hill ◽  
Tom Vosper ◽  
Cody Taylor ◽  
Tairongo Tuhiwai

Abstract Thermographic inspection provides opportunity to tailor non-destructive evaluation to specific applications. The paper discusses the opportunities this presents through consideration of adhesive bonds between composites, such as those joining structural members and outer skins, where access is restricted to a single side. To date, literature focusses on the development of either an experimental procedure or data processing approach. This research aims to demonstrate the importance of tailoring both of these aspects to an application to obtain improved defect detection and robust quantification. Firstly, the heating stimulus is optimised to maximise the thermal contrast created between defect and non-defect regions using a development panel. Traditional flash heating is compared to longer square pulse heating, using a developed shutter system, compromising between experimental duration and heat input. A pulse duration of 4 seconds using two 130 W halogen bulbs was found double the detection depth from 1 mm to 2 mm, revealing all defects in the development panel. Temporal processing was maintained for all data using thermal signal reconstruction. Spatial defect detection routines were then implemented to provide robust defect/feature detection. Spatial defect detection encompassed a combination of image enhancement and edge detection algorithms. A two-stage kernel filter/binary enhancement method followed by the use of Canny edge detection was found most robust, providing a sizing error of 1.8 % on the development panel data. This process was then implemented on adhesive bonds with simulated bond line defects. The simulated defects are based on target detection threshold of 10 mm diameter void found at 1- 2 mm depth. All simulated void defects were detected in the representative bonded joint down to the minimum diameter tested of 5 mm. By considering the tailoring of multiple aspects of the inspection routine independently, an overall optimised approach for the application of interest has been defined.


2021 ◽  
Author(s):  
◽  
Michael Welter

<p>Geopolymers have been suggested in the literature as matrix materials for fibre reinforced composites due to a unique combination of low-temperature synthesis and high temperature stability. This study investigated several key aspects of fibre reinforced geopolymer matrix composites in order to improve the basic knowledge of these materials. It was demonstrated that geopolymer matrix composites show great potential as fire-resistant materials for near room temperature applications. In particular, basalt fibre composites were of great interest due to their comparatively low cost and good mechanical performance. Microstructural investigations indicated that basalt fibres can potentially be used in geopolymer matrices up to 600°C. However, the success of the application of geopolymer matrix composites at higher temperatures is seen as critical and depends on further development of suitable matrices.  Several compositions within a sodium-metahalloysite model matrix system were evaluated in order to identify a suitable formulation for composite fabrication. An average compressive strength of ~ 79 MPa and flexural strength and modulus of ~ 10 MPa and 8.5 GPa, respectively, were achieved for the best batch of the main matrix composition. By optimising the matrix composition, the mechanical properties could be significantly improved, achieving an extremely high maximum compressive strength value of 145 MPa. Issues with reproducibility and the influence of various aspects of the fabrication process are discussed.  The room temperature flexural properties of unidirectional fibre reinforced composite bars with basalt, carbon and alumina fibres were investigated. Besides the fibre type, the effects of several other parameters including fibre sizing, matrix strength, span-to-depth ratio and specimen dimensions on the flexural properties and the failure behaviour of the composites were studied. Significant improvements to the mechanical properties were achieved with all fibre types. However, the mechanical behaviour was highly influenced by the elastic modulus of the fibre. Furthermore, it was shown that the composite properties were affected by the overall sample dimensions, the testing span and the mixing time of the geopolymer binder. The alumina fibre composites achieved the highest flexural stress with a maximum value of 470 MPa and a fibre content of ~ 30 vol.-%. Basalt and carbon fibre composites showed maximum flexural strength values around 200 MPa. Although all composite types displayed considerable post-fracture strength, only the basalt composites failed in tensile mode. The applicability of the weak matrix composites (WMC) concept to describe the mechanical behaviour of geopolymer matrix composites was discussed.  The fibre-matrix interactions were analysed between room temperature and 1000°C by means of electron microscopy, EDS and x-ray diffraction. All fibres were found to be chemically stable under the highly alkaline conditions of the geopolymer synthesis and showed no significant reaction with the geopolymer matrix at room temperature. The results indicate that basalt fibre composites may be used up to 600°C without significant degradation of the fibre. The heating of the carbon fibre composites to 600°C had drastic effect on the strength and integrity of the composite, in particular, when using sized carbon fibres. The alumina fibres showed good wetting and bonding behaviour but otherwise little reaction with the matrix even after heating to 1000°C.</p>


2021 ◽  
Author(s):  
◽  
Michael Welter

<p>Geopolymers have been suggested in the literature as matrix materials for fibre reinforced composites due to a unique combination of low-temperature synthesis and high temperature stability. This study investigated several key aspects of fibre reinforced geopolymer matrix composites in order to improve the basic knowledge of these materials. It was demonstrated that geopolymer matrix composites show great potential as fire-resistant materials for near room temperature applications. In particular, basalt fibre composites were of great interest due to their comparatively low cost and good mechanical performance. Microstructural investigations indicated that basalt fibres can potentially be used in geopolymer matrices up to 600°C. However, the success of the application of geopolymer matrix composites at higher temperatures is seen as critical and depends on further development of suitable matrices.  Several compositions within a sodium-metahalloysite model matrix system were evaluated in order to identify a suitable formulation for composite fabrication. An average compressive strength of ~ 79 MPa and flexural strength and modulus of ~ 10 MPa and 8.5 GPa, respectively, were achieved for the best batch of the main matrix composition. By optimising the matrix composition, the mechanical properties could be significantly improved, achieving an extremely high maximum compressive strength value of 145 MPa. Issues with reproducibility and the influence of various aspects of the fabrication process are discussed.  The room temperature flexural properties of unidirectional fibre reinforced composite bars with basalt, carbon and alumina fibres were investigated. Besides the fibre type, the effects of several other parameters including fibre sizing, matrix strength, span-to-depth ratio and specimen dimensions on the flexural properties and the failure behaviour of the composites were studied. Significant improvements to the mechanical properties were achieved with all fibre types. However, the mechanical behaviour was highly influenced by the elastic modulus of the fibre. Furthermore, it was shown that the composite properties were affected by the overall sample dimensions, the testing span and the mixing time of the geopolymer binder. The alumina fibre composites achieved the highest flexural stress with a maximum value of 470 MPa and a fibre content of ~ 30 vol.-%. Basalt and carbon fibre composites showed maximum flexural strength values around 200 MPa. Although all composite types displayed considerable post-fracture strength, only the basalt composites failed in tensile mode. The applicability of the weak matrix composites (WMC) concept to describe the mechanical behaviour of geopolymer matrix composites was discussed.  The fibre-matrix interactions were analysed between room temperature and 1000°C by means of electron microscopy, EDS and x-ray diffraction. All fibres were found to be chemically stable under the highly alkaline conditions of the geopolymer synthesis and showed no significant reaction with the geopolymer matrix at room temperature. The results indicate that basalt fibre composites may be used up to 600°C without significant degradation of the fibre. The heating of the carbon fibre composites to 600°C had drastic effect on the strength and integrity of the composite, in particular, when using sized carbon fibres. The alumina fibres showed good wetting and bonding behaviour but otherwise little reaction with the matrix even after heating to 1000°C.</p>


2021 ◽  
pp. 102584
Author(s):  
Zhen Li ◽  
Zhaozong Meng ◽  
Changcheng Wu ◽  
Constantinos Soutis ◽  
Zhijun Chen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5621
Author(s):  
Racim Radjef ◽  
Karyn L. Jarvis ◽  
Colin Hall ◽  
Andrew Ang ◽  
Bronwyn L. Fox ◽  
...  

Plasma-polymerised tetramethyldisiloxane (TMDSO) films are frequently applied as coatings for their abrasion resistance and barrier properties. By manipulating the deposition parameters, the chemical structure and thus mechanical properties of the films can also be controlled. These mechanical properties make them attractive as energy adsorbing layers for a range of applications, including carbon fibre composites. In this study, a new radio frequency (RF) plasma-enhanced chemical vapour deposition (PECVD) plasma reactor was designed with the capability to coat fibres with an energy adsorbing film. A key characterisation step for the system was establishing how the properties of the TMDSO films could be modified and compared with those deposited using a well-characterized microwave (MW) PECVD reactor. Film thickness and chemistry were determined with ellipsometry and X-ray photoelectron spectroscopy, respectively. The mechanical properties were investigated by nanoindentation and atomic force microscopy with peak-force quantitative nanomechanical mapping. The RF PECVD films had a greater range of Young’s modulus and hardness values than the MW PECVD films, with values as high as 56.4 GPa and 7.5 GPa, respectively. These results demonstrated the varied properties of TMDSO films that could in turn be deposited onto carbon fibres using a custom-built RF PECVD reactor.


Sign in / Sign up

Export Citation Format

Share Document