A Control Strategy and Upper Bound Solution for Non-Flat Tool Open Die Forging Automation

1999 ◽  
Author(s):  
T. J. Nye

Abstract The open die forging process can provide a number of benefits if its costs can be made competitive through automation. This paper describes a control strategy for automated open die forging forming sequence generation. An upper bound solution for forging with radiused tools is developed, along with a method for using this solution to estimate forming results, a necessary component of the control strategy. Model predictions are compared to physical experimental data using plasticine, and show good agreement.

Author(s):  
Wei Wei ◽  
Guang Chen

The purpose of this study is to obtain an upper bound solution of ECAP at 0 = ψ and φ=90 deg, which aims at analysis of the relations between ECAP upper bound pressure and the die angles of φ and ψ. The results show that the value of pressing load and the equivalent strain, e ε , decreases as the angle ψ increases at φ=90 deg, but the equivalent strain, e ε , decreases rapidly and no less than 0.90. The measured maximum load required for ECAP is in good agreement with the values obtained from the upper bound solution.


1962 ◽  
Vol 84 (4) ◽  
pp. 397-404 ◽  
Author(s):  
C. T. Yang

The upper-bound solution for plane-strain problems is modified and applied to three-dimensional extrusion and piercing. Johnson’s graphical solution is used to solve axisymmetric, eccentric, and two-bar extrusion problems of a lead billet. Kudo’s unit-deforming region approach is employed to solve cylindrical piercing problems of six nonferrous metals. The analytical extrusion pressure is compared with Frisch and Thomsen’s experimental data. A reasonably close agreement is obtained in the first two cases. The calculated piercing pressure is compared with the experimental results of Fukui, et al. A remarkably good agreement is observed for all six cases. Therefore the upper-bound solution after slight modification can be extended to three-dimensional problems in extrusion and piercing. A general conclusion for extending the upper-bound approach to all forming operations cannot be drawn until further study is done along this line.


Sign in / Sign up

Export Citation Format

Share Document