Using Project-Based Education and Interactive Web Resources in Undergraduate Heat Transfer

Author(s):  
John Howell

Abstract Two approaches to increasing student retention and interest have been implemented in the undergraduate heat transfer course at The University of Texas at Austin. The first approach, under a Department-wide initiative in Project Based Education, is to assign a semester-long project that requires most of the basic material in the traditional heat transfer course to examine a practical engineering system. Three projects used to date will be briefly discussed. Second, a series of web-accessible interactive modules has been constructed. The objective is to develop intuitive understanding of phenomena generally taught in the undergraduate heat transfer course. These modules allow students to vary the important aspects of a problem and immediately see the result. For example, one module demonstrates the characteristics of fins added to a surface to improve heat loss. Envision the handle on a frying pan; the student can vary the handle material, the cooling of the handle by increasing air flow velocity over it, etc. and see the temperature that results along the handle length. Such effects are difficult to show with chalk and talk. The instructor may also use the modules in class with computer projection to demonstrate these effects. Nine modules have been developed to date. These demonstrate heat transfer by conduction through planar and cylindrical walls; heat transfer from materials with internal energy generation; fins; conduction in two-dimensional systems (under development); transient conduction in semi-infinite and finite-width slabs; convective heat transfer in flow over flat plates; convective heat transfer for flow in pipes; heat exchangers; and radiation in rectangular enclosures. Modules are programmed in JAVA for interactive use using any browser (Netscape or Explorer), and do not require a particular platform.

2015 ◽  
Vol 723 ◽  
pp. 992-995
Author(s):  
Biao Li ◽  
Fu Guo Tong ◽  
Chang Liu ◽  
Nian Nian Xi

The surface convective heat transfer of mass concrete is an important element of concrete structure temperature effect analysis. Based on coupled Thermal Fluid governing differential equation and finite element method, the paper calculated and analyzed the dependence of the concrete surface convective heat transfer on the air flow velocity and the concrete thermal conductivity coefficient. Results show that the surface convective heat transfer coefficient of concrete is a quadratic polynomial function of the air flow velocity, but influenced much less by the air flow velocity when temperature gradient is dominating in heat transfer. The concrete surface convective heat transfer coefficient increases linearly with the thermal conductivity of concrete increases.


2021 ◽  
Author(s):  
Bertha Lai

The free convective heat transfer in a double-glazed window with between-panes Venetian blinds was measured using a Mach-Zehnder interferometer. A vertical cavity with differentially heated/cooled flat plates was set up with an internal blind at slat angles of ø=0⁰, ø=45⁰, and ø=90⁰ from the horizontal and tip-to-plate spacings of s=2mm, s=4mm, and s=8mm. Heat transfer measurements were taken with air as the test fluid and at Rayleigh numbers of Ra~4.5x10(4), RA~6.7X10(4), and Ra~13.1x10(4), based on cavity widths of W=28.7mm, W=32.7mm, and W=40.7mm, respectively. Finite fringe interferograms were used to obtain local and average heat transfer data. Infinite fringe interferograms were taken to visualize the temperature field within the cavity. A preliminary numerical study of the experimental geometry was also conducted. The results show that there was substantial variation in local heat transfer rates caused by the presence of the between-panes blind inside the window cavity. In general, experimental average Nusselt numbers were found to be lower than those of a cavity without blinds.


1990 ◽  
Vol 112 (4) ◽  
pp. 975-987 ◽  
Author(s):  
S. S. Tewari ◽  
Y. Jaluria

An experimental study is carried out on the fundamental aspects of the conjugate, mixed convective heat transfer from two finite width heat sources, which are of negligible thickness, have a uniform heat flux input at the surface, and are located on a flat plate in the horizontal or the vertical orientation. The heat sources are wide in the transverse direction and, therefore, a two-dimensional flow circumstance is simulated. The mixed convection parameter is varied over a fairly wide range to include the buoyancy-dominated and the mixed convection regimes. The circumstances of pure natural convection are also investigated. The convective mechanisms have been studied in detail by measuring the surface temperatures and determining the heat transfer coefficients for the two heated strips, which represent isolated thermal sources. Experimental results indicate that a stronger upstream heat source causes an increase in the surface temperature of a relatively weaker heat source, located downstream, by reducing its convective heat transfer coefficient. The influence of the upstream source is found to be strongly dependent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent of each other, in terms of thermal effects, at a separation distance of more than about three strip widths for both the orientations. The results obtained are relevant to many engineering applications, such as the cooling of electronic systems, positioning of heating elements in furnaces, and safety considerations in enclosure fires.


Sign in / Sign up

Export Citation Format

Share Document