A Convective Description of Flexible Robot Dynamics

Author(s):  
Daniel Franitza

This paper describes a theory for dynamics simulation of non-linear elastically deformable mechanisms as a basis for compliant manipulators. The description of the mechanical structure based on local coordinates in a convective metric for one-dimensional structures is introduced. Besides the quasi-static case, loads related to mass inertial terms are taken into consideration. This changes the original first order set of linear differential equations into non-linear second order partial differential equations. Some numerical aspects for the generation of a solution for the initial boundary value problem described are discussed.

1996 ◽  
Vol 06 (04) ◽  
pp. 521-533
Author(s):  
WENHUAN YU

In this letter we consider the well-posedness of a mixed initial–boundary value problem for a vibrating elastic system, which describes the dynamics of a kind of flexible robot with an elastic link, a rigid link, and three rotation axes. The governing equations consist of two nonlinear partial differential equations of order four and three nonlinear integro-differential equations. Using the semigroup theory, we prove that the above-mentioned problem is well-posed, i.e. there is a unique classical solution that continuously depends on the initial data.


2005 ◽  
Vol 9 (1) ◽  
pp. 51-66 ◽  
Author(s):  
J. Sieber ◽  
M. Radžiūnas ◽  
K. R. Schneider

We investigate the longitudinal dynamics of multisection semiconductor lasers based on a model, where a hyperbolic system of partial differential equations is nonlinearly coupled with a system of ordinary differential equations. We present analytic results for that system: global existence and uniqueness of the initial‐boundary value problem, and existence of attracting invariant manifolds of low dimension. The flow on these manifolds is approximately described by the so‐called mode approximations which are systems of ordinary differential equations. Finally, we present a detailed numerical bifurcation analysis of the two-mode approximation system and compare it with the simulated dynamics of the full PDE model.


2017 ◽  
Vol 22 (4) ◽  
pp. 425-440
Author(s):  
Harijs Kalis ◽  
Andris Buikis ◽  
Aivars Aboltins ◽  
Ilmars Kangro

In this paper we study the problem of the diffusion of one substance through the pores of a porous multi layered material which may absorb and immobilize some of the diffusing substances with the evolution or absorption of heat. As an example we consider circular cross section wood-block with two layers in the radial direction. We consider the transfer of heat process. We derive the system of two partial differential equations (PDEs) - one expressing the rate of change of concentration of water vapour in the air spaces and the other - the rate of change of temperature in every layer. The approximation of corresponding initial boundary value problem of the system of PDEs is based on the conservative averaging method (CAM) with special integral splines. This procedure allows reduce the 3-D axis-symmetrical transfer problem in multi-layered domain described by a system of PDEs to initial value problem for a system of ordinary differential equations (ODEs) of the first order.


Author(s):  
Ērika Teirumnieka ◽  
Ilmārs Kangro ◽  
Edmunds Teirumnieks ◽  
Harijs Kalis

<p>In this paper we consider averaging methods for solving the 3-D boundary value problem in domain containing 2 layers of the peat block. We consider the metal concentration in the peat blocks. Using experimental data the mathematical model for calculation of concentration of metal in different points in every peat layer is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for elliptic type partial differential equations of second order with piece-wise diffusion coefficients in every direction and peat layers.</p><p>The special parabolic and exponential spline, which interpolation middle integral values of piece-wise smooth function, are considered. With the help of this splines is reduce the problems of mathematical physics in 3-D with piece-wise coefficients to respect one coordinate to problems for system of equations in 2-D. This procedure allows reduce the 3-D problem to a problem of 2-D and 1-D problems and the solution of the approximated problem is obtained analytically.</p><p>The solution of corresponding averaged 2-D initial-boundary value problem is obtained also numerically, using for approach differential equations the discretization in space applying the central differences. The approximation of the 2-D non-stationary problem is based on the implicit finite-difference and alternating direction (ADI) methods. The numerical solution is compared with the analytical solution.</p>


Author(s):  
Ilmārs Kangro ◽  
Harijs Kalis ◽  
Ērika Teirumnieka ◽  
Edmunds Teirumnieks

In this paper we study diffusion and convection filtration problem of one substance through the pores of a porous material which may absorb and immobilize some of the diffusing substances. As an example we consider round cylinder with filtration process in the axial direction. The cylinder is filled with sorbent i.e. absorbent material that passed through dirty water or liquid solutions. We can derive the system of two partial differential equations (PDEs). One equation is expressing the rate of change of concentration of water in the pores of the sorbent and the other - the rate of change of concentration in the sorbent or kinetically equation for absorption. The approximation of corresponding initial boundary value problem of the system of PDEs is based on the conservative averaging method (CAM). This procedure allows reducing the 2-D axis-symmetrical mass transfer problem described by a system of PDEs to initial value problem for a system of ordinary differential equations (ODEs) of the first order.


Sign in / Sign up

Export Citation Format

Share Document