Numerical Simulation of Turbulent Heat Transfer to Near-Critical Water in a Curved Pipe

Author(s):  
B. Zheng ◽  
C. X. Lin ◽  
M. A. Ebadian

Numerical simulations are performed to investigate the developing turbulent flow and heat transfer characteristics of water near the critical point in a curved pipe. The Reynolds stress model is employed to simulate the turbulent flow and heat transfer in a curved pipe at a constant wall temperature with or without buoyancy force effect. Due to the great variation in physical properties of water near the critical point, the turbulent heat transfer can be significantly altered as compared with the pure force convection in the curved pipe. This study explores the influence of the near-critical pressure on the development of fluid flow and heat transfer along the pipe. Based on the results of this research, the development of velocity, temperature, and heat transfer coefficient along the pipe are presented graphically and analyzed.

Author(s):  
Hang Seok Choi ◽  
Tae Seon Park

The turbulent flow fields of a parallel plate or channel with spatially periodic condition have been widely investigated by many researchers. However the rectangular or square curved duct flow has not been fundamentally scrutinized in spite of its engineering significance, especially for cooling device. Hence, in the present study large eddy simulation is applied to the turbulent flow and heat transfer in a rectangular duct with 180° curved angle varying its aspect ratio. The turbulent flow and the thermal fields are calculated and the representative vortical motions generated by the secondary flow are investigated. From the results, the secondary flow has a great effect on the heat and momentum transport in the flow. With changing the aspect ratio, the effect of the geometrical variation to the secondary flow and its influence on the turbulent characteristics of the flow and heat transfer are studied.


2011 ◽  
Vol 201-203 ◽  
pp. 171-175
Author(s):  
Wei Zheng Zhang ◽  
Xiao Liu ◽  
Chang Hu Xiang

The turbulent flow in the near-wall region affects the wall heat transfer dominantly. The farther it is from the wall, the less effect it has. So a two-step mechanism of the turbulent wall heat transfer is released: first, the energy is transferred to the outside of the viscous sub-layer by the rolling of the micro-eddy; secondly, the energy gets to the wall by conduction. Then, a theoretical model of wall heat transfer is developed with this concept. The constant in the model is confirmed by experiment and simulation of the transient turbulent heat transfer in pipe flow. Finally, the model is used to predict the local heat flux under different conditions, and the results agree well with the experimental results as well as the simulation results.


1997 ◽  
Vol 119 (1) ◽  
pp. 46-52 ◽  
Author(s):  
S. Mazumder ◽  
M. F. Modest

The modeling of near-wall turbulent heat transfer necessitates appropriate description of near-wall effects, namely, molecular transport, production of turbulence by inhomogeneities, and dissipation of the temperature fluctuations by viscosity. A stochastic Lagrangian model, based on the velocity-composition joint probability density function (PDF) method, has been proposed. The proposed model, when compared with experimental and direct numerical simulation (DNS) data, overdamps the dissipation of the temperature fluctuations in the inertial sublayer, but reaches the correct limit at the wall. The performance of the model has also been compared to the standard k-ε and the algebraic Reynolds stress model (ARSM) for both constant heat flux and constant temperature boundary conditions at large Reynolds numbers. The Lagrangian nature of the model helps eliminate numerical diffusion completely.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

In the present investigation, turbulent heat transfer in fully developed curved-pipe flow has been studied by using large eddy simulation (LES). We consider a fully developed turbulent curved-pipe flow with axially uniform wall heat flux. The friction Reynolds number under consideration is Reτ  = 1000 based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. To investigate the effects of wall curvature on turbulent flow and heat transfer, we varied the nondimensionalized curvature (δ) from 0.01 to 0.1. Dynamic subgrid-scale models for turbulent subgrid-scale stresses and heat fluxes were employed to close the governing equations. To elucidate the secondary flow structures due to the pipe curvature and their effect on the heat transfer, the mean quantities and various turbulence statistics of the flow and temperature fields are presented, and compared with those of the straight-pipe flow. The friction factor and the mean Nusselt number computed in the present study are in good agreement with the experimental results currently available in the literature. We also present turbulence intensities, skewness and flatness factors of temperature fluctuations, and cross-correlations of velocity and temperature fluctuations. In addition, we report the results of an octant analysis to clarify the correlation between near-wall turbulence structures and temperature fluctuation in the vicinity of the pipe wall. Based on our results, we attempt to clarify the effects of the pipe curvature on turbulent heat transfer. Our LES provides researchers and engineers with useful data to understand the heat-transfer mechanisms in turbulent curved-pipe flow, which has numerous applications in engineering.


1957 ◽  
Vol 35 (4) ◽  
pp. 410-434
Author(s):  
A. W. Marris

A vorticity transfer analogy theory of turbulent heat transfer is developed first for the case of fully developed turbulent flow under zero transverse pressure and temperature gradients such as that in the annulus between concentric cylinders rotating with different angular velocities or in a "free vortex". The mean flow is assumed to be two-dimensional. The theory, which requires that the turbulence be statistically isotropic, yields a temperature distribution in agreement with experiment except in narrow regions immediately adjacent to the boundaries. An argument is given to show that the boundary layer thickness should be of the order of the reciprocal of the square root of the mean velocity, these boundaries are introduced, and Nusselt moduli are defined and their dependence on Reynolds and Prandtl numbers is investigated.The temperature distributions for the case of non-zero transverse temperature and pressure gradients, i.e. for the case of flow in a curved channel in which the fluid does not flow back into itself, are then obtained and the applicability of the simpler equations for zero transverse gradients to this case is investigated.


1987 ◽  
Vol 109 (1) ◽  
pp. 62-67 ◽  
Author(s):  
R. S. Amano ◽  
A. Bagherlee ◽  
R. J. Smith ◽  
T. G. Niess

A numerical study is performed examining flow and heat transfer characteristics in a channel with periodically corrugated walls. The complexity of the flow in this type of channel is demonstrated by such phenomena as flow impingement on the walls, separation at the bend corners, flow reattachment, and flow recirculation. Because of the strong nonisotropic nature of the turbulent flow in the channel, the full Reynolds-stress model was employed for the evaluation of turbulence quantities. Computations are made for several different corrugation periods and for different Reynolds numbers. The results computed by using the present model show excellent agreement with experimental data for mean velocities, the Reynolds stresses, and average Nusselt numbers. The study was further extended to a channel flow where fins are inserted at bends in the channel. It was observed that the insertion of fins in the flow passage has a visible effect on flow patterns and skin friction along the channel wall.


Author(s):  
D. L. Rigby ◽  
A. A. Ameri ◽  
E. Steinthorsson

The Low Reynolds number version of the Stress-ω model and the two equation k-ω model of Wilcox were used for the calculation of turbulent heat transfer in a 180 degree turn simulating an internal coolant passage. The Stress-ω model was chosen for its robustness. The turbulent thermal fluxes were calculated by modifying and using the Generalized Gradient Diffusion Hypothesis. The results showed that using this Reynolds Stress model allowed better prediction of heat transfer compared to the k-ω two equation model. This improvement however required a finer grid and commensurately more CPU time.


Sign in / Sign up

Export Citation Format

Share Document