Higher Order Computations of the Convection-Diffusion Equation With Curved Boundaries

Author(s):  
Heejin Lee ◽  
Michael M. Chen

In computational heat transfer and fluid mechanics, high order accuracy methods are desirable in order to reduce computational effort or to obtain more accurate solutions for a given mesh coarseness. On structured grids, the finite difference method is especially easy for deriving and implementing higher order schemes. In spite of this advantage, for complex geometries high order schemes have not been attractive due to the restriction of the structured grid in dealing with curved boundaries. Therefore, for complex geometries most computational methods are based on finite element or finite volume methods with unstructured or boundary-fitted mesh at the expense of difficult and complicated implementation. For this reason, few computations for complex geometries have attempted more than near-second-order accuracy. In our paper, we demonstrate a high order scheme to deal with curved boundaries of complex geometries in Cartesian coordinate system using the finite difference method, taking advantages of the ease and simplicity of structured grid. The method is based on an extension of the full second order methods presented previously by Jung et al. [2000] and Lee and Chen [2002]. The temperature distributions and maximum errors in a cylindrical solid and an annulus where the velocity distribution is given were calculated with a third order accurate scheme, and compared with exact solutions. Theoretical derivations and numerical experiments show that true third order accuracy have been attained in advection-diffusion problems with curved boundaries. The results reinforce the assertion that the same concepts can be extended to any order accuracy so far as such accuracy is deemed desirable for the problem of interest.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Reem Edwan ◽  
Shrideh Al-Omari ◽  
Mohammed Al-Smadi ◽  
Shaher Momani ◽  
Andreea Fulga

AbstractConvection and diffusion are two harmonious physical processes that transfer particles and physical quantities. This paper deals with a new aspect of solving the convection–diffusion equation in fractional order using the finite volume method and the finite difference method. In this context, we present an alternative way for estimating the space fractional derivative by utilizing the fractional Grünwald formula. The proposed methods are conditionally stable with second-order accuracy in space and first-order accuracy in time. Many comparisons are performed to display reliability and capability of the proposed methods. Furthermore, several results and conclusions are provided to indicate appropriateness of the finite volume method in solving the space fractional convection–diffusion equation compared with the finite difference method.


2015 ◽  
Vol 17 (2) ◽  
pp. 337-370 ◽  
Author(s):  
Ossian O'Reilly ◽  
Jan Nordström ◽  
Jeremy E. Kozdon ◽  
Eric M. Dunham

AbstractWe couple a node-centered finite volume method to a high order finite difference method to simulate dynamic earthquake ruptures along nonplanar faults in two dimensions. The finite volume method is implemented on an unstructured mesh, providing the ability to handle complex geometries. The geometric complexities are limited to a small portion of the overall domain and elsewhere the high order finite difference method is used, enhancing efficiency. Both the finite volume and finite difference methods are in summation-by-parts form. Interface conditions coupling the numerical solution across physical interfaces like faults, and computational ones between structured and unstructured meshes, are enforced weakly using the simultaneous-approximation-term technique. The fault interface condition, or friction law, provides a nonlinear relation between fields on the two sides of the fault, and allows for the particle velocity field to be discontinuous across it. Stability is proved by deriving energy estimates; stability, accuracy, and efficiency of the hybrid method are confirmed with several computational experiments. The capabilities of the method are demonstrated by simulating an earthquake rupture propagating along the margins of a volcanic plug.


Geophysics ◽  
1974 ◽  
Vol 39 (6) ◽  
pp. 834-842 ◽  
Author(s):  
R. M. Alford ◽  
K. R. Kelly ◽  
D. M. Boore

Recent interest in finite‐difference modeling of the wave equation has raised questions regarding the degree of match between finite‐difference solutions and solutions obtained by the more classical analytical approaches. This problem is studied by means of a comparison of seismograms computed for receivers located in the vicinity of a 90-degree wedge embedded in an infinite two‐dimensional acoustic medium. The calculations were carried out both by the finite‐difference method and by a more conventional eigenfunction expansion technique. The results indicate the solutions are in good agreement provided that the grid interval for the finite‐difference method is sufficiently small. If the grid is too coarse, the signals computed by the finite‐difference method become strongly dispersed, and agreement between the two methods rapidly deteriorates. This effect, known as “grid dispersion,” must be taken into account in order to avoid erroneous interpretation of seismograms obtained by finite‐difference techniques. Both second‐order accuracy and fourth‐order accuracy finite‐difference algorithms are considered. For the second‐order scheme, a good rule of thumb is that the ratio of the upper half‐power wavelength of the source to the grid interval should be of the order of ten or more. For the fourth‐order scheme, it is found that the grid can be twice as coarse (five or more grid points per upper half‐power wavelength) and good results are still obtained. Analytical predictions of the effect of grid dispersion are presented; these seem to be in agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document