half power
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 80)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
В.И. Николаев ◽  
Ю.Г. Пастернак ◽  
В.А. Пендюрин ◽  
С.М. Фёдоров

Предложена конструкция приземной многолучевой антенной решетки на основе линзы из гранитного щебня, позволяющая одновременно формировать до нескольких десятков лучей в длинноволновой области УКВ-диапазона волн. Эффективная диэлектрическая проницаемость гранитного щебня оценивалась с помощью формулы Лихтенекера для мелкодисперсных смесей; ее величина приблизительно равна 3. Для оценки величины замедления поверхностных волн в линзе использовалась методика анализа дисперсионных характеристик зеркального диэлектрического волновода; при высоте линзы 1.8 метра эффективная диэлектрическая проницаемость эквивалентного зеркального диэлектрического волновода равна 2.1. В качестве облучателей линзы - несимметричные электрические вибраторы, расположенные на окружности по периметру линзы, диаметр которой составляет 30 метров; диаметр подстилающей стальной поверхности составляет 40 метров. Предложенная антенная система характеризуется потерями в щебне около 3 дБ при диаметре линзы около 3,8 длин волн; показано, что коэффициент направленного действия у каждого луча может составлять около 15,5 дБ, при ширине главного лепестка в азимутальной плоскости по уровню половинной мощности около 10 градусов We propose a design of a surface multi-beam antenna array based on a lens of crushed granite, which makes it possible to simultaneously form up to several tens of beams in the long-wave region of the VHF wave range. We estimated the effective dielectric constant of crushed granite using the Lichtenecker formula for fine mixtures; its value is approximately equal to 3. To estimate the magnitude of the deceleration of surface waves in the lens, we used a technique to analyze the dispersion characteristics of a mirror dielectric waveguide; at a lens height of 1.8 meters, the effective dielectric constant of the equivalent mirror dielectric waveguide is 2.1. As irradiators of the lens - asymmetric electric vibrators located on a circle around the perimeter of the lens, the diameter of which is 30 meters; the diameter of the underlying steel surface is 40 meters. The proposed antenna system is characterized by a loss in rubble of about 3 dB with a lens diameter of about 3.8 wavelengths; the directivity of each beam can be about 15.5 dB, with the width of the main lobe in the azimuthal plane at half power level of about 10 degrees


2021 ◽  
Author(s):  
Hanxiao Wu ◽  
Zhi Tao ◽  
Haiwang Li ◽  
Tiantong Xu ◽  
Wenbin Wang ◽  
...  

This paper presents an electromagnetic vibration energy harvester utilizing 3D MEMS coils and multi-mode structure to improve the output power and broaden the frequency band. We fabricated and assembled the prototype, with a pair of 3D coils fabricated by lithography, silicon etching, silicon direct bonding and copper electroplating, et al., which are compatible with CMOS processes. The numerical simulation was conducted to analysis the vibration modes of the spring-mass system, which revealed the multi-mode mechanism of serpentine springs. We also tested the output power-frequency curves for different load and excitation acceleration to investigate the optimal load resistance and the influence of excitation. The test results showed that the proposed prototype can generate 1.2μW power under 992Hz for 1g acceleration with a half-power bandwidth of 65Hz, which are higher than some recent published data, proving the superiority of proposed structure.


2021 ◽  
Vol 21 (5) ◽  
pp. 439-447
Author(s):  
You-Seok Yeoh ◽  
Kyeong-Sik Min

This paper presents the characteristics of a 6 × 26 slotted waveguide array antenna for a wave monitoring radar system. The proposed antenna was designed as a double-layer structure that operated in the Ku-band and combined the radiating antenna and feeding antenna structures to secure a broad bandwidth. To realize the high-gain properties of the antenna and the beamwidth control, parameters such as the resonance slot length, width, offset, and angle of the feeding slot placed on the broad wall were precisely calculated using the iteration. The measured results for the voltage standing wave ratio, radiation patterns, half-power beamwidth, and peak gains of the 6 × 26 slotted waveguide array antenna agreed well with the simulated results.


2021 ◽  
pp. 107754632110546
Author(s):  
Panxu Sun ◽  
Dongwei Wang

The half-power bandwidth method is usually used to calculate structural damping parameters by frequency response function (FRF). In this note, the half-power bandwidth methods for the displacement FRF, the velocity FRF, and the acceleration FRF are proposed based on viscous and hysteretic damping models, respectively. Comparison results show that the application conditions of half-power bandwidth methods for the displacement and acceleration FRFs are limited. They can only be used to calculate the small damping ratio/loss factor. The application condition of half-power bandwidth method for the velocity FRF is not limited. It can be used to calculate the large or small damping ratio/loss factor, which should be the first choice for calculating damping parameters. Besides, when the damping ratio is less than 0.2546 or the loss factor is less than 0.5658, the relative difference between the loss factor and twice the damping ratio is less than 10%. With the increase of the damping ratio or loss factor, the relative difference will increase rapidly, and the approximate relationship is no longer applicable.


Author(s):  
Qiang Yan ◽  
Xianzhi Dai ◽  
Zhang Zhang ◽  
Lijun Wang ◽  
Yong Wang

Abstract A broadband vibration energy harvester based on nonlinear magnetic force and rotary pendulums is proposed in this paper. The harvester is mainly composed of a magnetoelectric transducer and a rotary pendulum fixed with four permanent magnets. In order to improve the working bandwidth of the harvester, two pairs of permanent magnets are added in the middle of the rotary pendulum by using magnetic nonlinearity. The mechanical - magnetic - electrical analytical model of the harvester is established, and the theoretical value obtained by the model is basically consistent with the experimental value. The results show that the harvester has a strong nonlinearity through the magnetic force. When the acceleration is 0.4 g, some typical testing results are as follows: the resonant frequency is 19 Hz, maximum peak-peak voltage is 94.1 V, half power bandwidth is 15.8 Hz, center frequency is 26.9 Hz, and the ratio of half power bandwidth to the center frequency is 58.73 %.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012078
Author(s):  
Yi Zhou ◽  
Dong Zhang ◽  
Xiaoguang Xu ◽  
Jun Li

Abstract Through the study of the latest radiation disturbance measurement standards, the difference between test volume and equipment under test volume was compared and analyzed. Different types of antennas will be used in the radiated disturbance measurement in terms of the different frequency range. Various antennas have kinds of directional characteristics. This article analyzes the influence of antenna half-power beam width on the equipment under test volume, especially on the height, from three frequency ranges. Furthermore, taking the typical horn antenna as the starting point, as well as the formula of volume with antenna half-power beamwidth, the relationship between equipment volume and frequency is calculated. Finally, the influence of antenna half-power beam width on the equipment under test volume is obtained.


2021 ◽  
Vol 4 ◽  
pp. 70-84
Author(s):  
Satyanand Singh

Minimum Redundancy Linear Arrays (MRLAs) and Uniform Linear Arrays (ULAs) investigation conducted with the possibility of using them in future 5G smart devices. MRLAs are designed to minimize the number of sensor pairs with the same spatially correlated delay. It eliminates selected antennas from the entire composite antenna array and preserves all possible antenna spacing.  MRLAs have attractive features for linear sparse arrays, even if the built-in surface is deformed, it works without problems. To our knowledge, MRLAs have not been applied to smart devices so far. In this work, a 7-element ULAs and 4-element MRLAs (same aperture) were used for the simulation. The Half Power Beamwidth (HPBW) is 0.666 and the Null-to-Null Beamwidth ( ) is 1.385 in ψ-space. In comparison, the standard 4-element arrays are 1.429 and 3.1416, while the standard 7-element linear arrays are 0.801 and 1.795 respectively. Experimental results show that 4-element MLRAs have a narrower mean beam, much higher sidelobes and shallow nulls. Therefore, in terms of main lobe features, 4- elements MRLAs have an improvement over the standard 7-element ULAs. Doi: 10.28991/esj-2021-SP1-05 Full Text: PDF


2021 ◽  
Vol 10 (2) ◽  
pp. 67-77
Author(s):  
S. I. Abdelrahman ◽  
A. H. Hussein ◽  
A. E. A. Shaalan

Side lobe level reduction is one of the most critical research topics in antenna arrays beamforming as it mitigates the interfering and jamming signals. In this paper, a hybrid combination between the Genetic algorithm (GA) optimization technique and the gauss elimination (GE) equation solving technique is utilized for the introduction of the proposed GA/GE beamforming technique for linear antenna arrays. The proposed technique estimates the optimum excitation coefficients and the non-uniform inter-elements spacing for a specific side lobe (SL) cancellation without disturbing the half power beamwidth (HPBW) of the main beam. Different size Chebychev linear antenna arrays are taken as simulation targets. The simulation results revealed the effectiveness of the proposed technique


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2391
Author(s):  
Sheng Huang ◽  
King Yuk Chan ◽  
Yu Wang ◽  
Rodica Ramer

Substrate integrated waveguide (SIW) technology that combines 3D and 2D structures has been successfully utilized due to its notable advantages, including in its application to H-plane horn antennas. As this type of antenna is commonly constructed on thin substrates, the E-plane radiation pattern is always wide, thereby limiting the achievable gain performance. In this work, we propose an approach that incorporates 3D printed horns on a prefabricated SIW H-plane horn antenna to successfully narrow the E-plane radiation pattern, thereby improving the gain performance. The proposed E-plane horn is designed at the aperture of the original H-plane horn, providing a smooth and continuous wave transition from the thin substrate to the end-fire direction. This approach improves the directional radiation performance significantly and reduces fabrication time and associated difficulties as the parasitic structures are simply attached to the SIW horn, without the requirement of redesigning or refabricating the original antenna. From 20 to 25 GHz, an optimized prototype shows excellent performance. At 22.7 GHz, it exhibits 35° and 33° for the E- and H-plane half-power beamwidths (HPBWs), with corresponding side-lobe levels (SLLs) of −23 dB and −15 dB. The present research reveals that the proposed design presents high feasibility and a reduced demand for high-precision manufacturing processes at a lower cost, concomitantly providing an effective means to further improve on the radiation characteristics.


Sign in / Sign up

Export Citation Format

Share Document