Study of Vehicle Dynamic Modeling Fidelity on Haptic Collaboration in Steer-by-Wire Systems
The Steer-By-Wire (SBW) paradigm for vehicle control offers many advantages over traditional use of mechanical steering systems but comes at the cost of loss of proprioception (“road feel”). To this end, haptic interfaces for SBW systems have been proposed to restore the intimacy of interactive control back to the driver. However, the degree of realism for the interaction is dependent on the fidelity of the underlying computational vehicle dynamics model. Hence we focus on quantitative comparative testing of the role of vehicle dynamics modeling fidelity for haptic SBW tasks. Additionally the SBW paradigm can simplify implementation of shared/collaborative control (steering) of the underlying mechanical system (vehicle). Possibilities range from sharing of control between multiple individual users or between user and automation technology. Performance evaluation of 3 modes of shared control vs. individual control of driving was carried out and preliminary analysis of results is presented in the paper.