Finite Element Model of a Heated Wire Catalyst in Cross Flow

Author(s):  
Katie Leichliter ◽  
Bob Lounsbury ◽  
Judi Steciak ◽  
Ralph Budwig ◽  
Steve Beyerlein

Experimentally obtained temperatures of a heated coiled platinum wire in low Reynolds Number cross-flow were compared with a three-dimensional finite element (finite volume) model. The calculated average wire temperature was in good agreement with experimentally obtained values with deviations close to experimental uncertainty bounds at temperatures between 530K and 815K. The model predicted a temperature variation along each coil, with the lowest temperatures along the leading edges of the coil and the higher temperatures at the trailing edges. The rate of heat generated at the wire surface from catalytic reactions was found for the ignition of lean propane/oxygen/nitrogen mixtures. We studied the coiled catalytic wire as part of our efforts to ignite very lean homogeneous air-fuel mixtures in transportation engines under conditions approaching Homogeneous Charge Compression Ignition (HCCI).

2007 ◽  
Vol 329 ◽  
pp. 403-408 ◽  
Author(s):  
Bing Zhang ◽  
Masato Yoshioka

A three dimensional finite element model for Vickers indentations on brittle materials is presented in order to analyze the stress distribution. The objective of this paper is to study when and where cracks are most likely to initiate and propagate in the indentation cycle based on the analyzed stresses. Therefore the time-dependent stresses around and below the surface of the contact area during the indentation cycle, especially at the end of loading and at the beginning of unloading phase are investigated in detail. The analytical results are shown to be in good agreement and verified with the experimental results.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2013 ◽  
Vol 336-338 ◽  
pp. 760-763
Author(s):  
Hui Yue

A short explanation of the finite element method as a powerful tool for mathematical modeling is provided, and an application using constitutive modeling of the behavior of ligaments is introduced. Few possible explanations of the role of water in ligament function are extracted from two dimensional finite element models of a classical ligament. The modeling is extended to a three dimensional finite element model for the human anterior cruciate ligament. Simulation of ligament force in pitching motion of basketball player is studied in this paper.


Sign in / Sign up

Export Citation Format

Share Document