Optimal Viscous Damper Placement Using Level Set Topology Optimization Method

Author(s):  
Masoud Ansari ◽  
Amir Khajepour ◽  
Ebrahim Esmailzadeh

Vibration control has always been of great interest for many researchers in different fields, especially mechanical and civil engineering. One of the key elements in control of vibration is damper. One way of optimally suppressing unwanted vibrations is to find the best locations of the dampers in the structure, such that the highest dampening effect is achieved. This paper proposes a new approach that turns the conventional discrete optimization problem of optimal damper placement to a continuous topology optimization. In fact, instead of considering a few dampers and run the discrete optimization problem to find their best locations, the whole structure is considered to be connected to infinite numbers of dampers and level set topology optimization will be performed to determine the optimal damping set, while certain number of dampers are used, and the minimum energy for the system is achieved. This method has a few major advantages over the conventional methods, and can handle damper placement problem for complicated structures (systems) more accurately. The results, obtained in this research are very promising and show the capability of this method in finding the best damper location is structures.

Author(s):  
Hae Chang Gea ◽  
Xing Liu ◽  
Euihark Lee ◽  
Limei Xu

In this paper, topology optimization under multiple independent loadings with uncertainty is presented. In engineering practice, load uncertainty can be found in many applications. From the literature, researchers have focused mainly on problems containing only a single uncertain external load. However, such idealistic problems may not be very useful in engineering practice. Problems involving multi-loadings with uncertainty are more commonly found in engineering applications. This paper presents a method to solve a system which contains multiple independent loadings with load uncertainty. First, a two-level optimization problem is formulated. The upper level problem is a typical topology optimization problem to minimize the mean compliance in the design using the worst case conditions. The lower level optimization problem is to solve for the worst loadings corresponding to the critical structure response. At the lower level formulation, an unknown-but-bounded model is used to define uncertain loadings. There are two challenges in finding the worst loading case: non-convexity and multi-loadings. The non-convexity problem is addressed by reformulating the problem as an inhomogeneous eigenvalue problem by applying the KKT optimality conditions and the multi-uncertain loadings problem is solved by an iterative method. After the worst loadings are generated, the upper level problem can be solved by a general topology optimization method. The effectiveness of the proposed method is demonstrated by numerical examples.


Author(s):  
Qi Xia ◽  
Tielin Shi

Load-normalized strain energy increments between consecutive load steps are aggregated through the Kreisselmeier-Steinhauser (KS) function, and the KS function is proposed as a stiffness criterion of geometrically nonlinear structures. A topology optimization problem is defined to minimize the KS function together with the perimeter of structure and a volume constraint. The finite element analysis is done by remeshing, and artificial weak material is not used. The topology optimization problem is solved by using the level set method. Several numerical examples in two dimensions are provided. Other criteria of stiffness, i.e., the end compliance and the complementary work, are compared.


Sign in / Sign up

Export Citation Format

Share Document