A Web Based “Virtual Racing Car Championship” to Teach Vehicle Dynamics and Multidisciplinary Design

Author(s):  
Francesco Biral ◽  
Fabrizio Zendri ◽  
Enrico Bertolazzi ◽  
Paolo Bosetti ◽  
Marco Galvani ◽  
...  

A web based VRCC (Virtual Racing Car Championship) application is here presented. The application is intended for educational purposes to teach students a variety of topics of the teaching course “Vehicle Dynamics and Control” in Mechatronics Master Degree Course; the present application forces students to understand the relevant parameters that govern the dynamic performance of racing cars. The application relies on an optimal control library, which is capable of calculating minimum lap times of a racing car on the basis of a comprehensive symbolic description of an open-wheel racing car dynamic model. Students are enrolled in a number of teams competing in a Championship to attain the minimum lap time (i.e., the pole position) on three circuits by choosing the appropriate setup of the racing car. The ranking is based on the best lap time obtained in the qualification session. The application stimulates students to adopt a multidisciplinary approach in a challenging and instructive environment, where they are in a position to apply a broad range of knowledges and abilities they have acquired during the Mechanotronics engineering course.

Robotica ◽  
1988 ◽  
Vol 6 (1) ◽  
pp. 63-69 ◽  
Author(s):  
V. Potkonjak

SUMMARYThis paper discusses one problem of robot dynamics rarely mentioned in papers relevent to this field. It is the problem of torsional effects in torque transmissions (reducers, shafts, transmission chains, etc.). The problem is significant since oscillations can appear to be due to these effects. The complete dynamic model, which includes these effects, is derived and the possible simplifications considered. The position of feedback transducers is discussed since it appears as an important problem when it is intended to minimize the influence of these elastic vibrations. The discussion is based on eigenvalues and simulation results.


2011 ◽  
Vol 9 (1/2) ◽  
pp. 78 ◽  
Author(s):  
Mark B. Colton ◽  
Liang Sun ◽  
Daniel C. Carlson ◽  
Randal W. Beard

Author(s):  
Vincent Nguyen ◽  
Munther A. Hassouneh ◽  
Balakumar Balachandran ◽  
Eyad H. Abed

Cavity-vehicle interactions play a significant role in the dynamics of supercavitating underwater vehicles. To date, in the vast majority of planing force models for supercavitating vehicle dynamics, a steady planing assumption is utilized, wherein the vehicle-cavity interaction is only dependent on the vehicle’s position relative to the cavity. In this work, a framework to properly account for the vehicle radial motions into and out of the fluid is presented. This effectively introduces damping or velocity related dependence into the planing force formulation. The planing force is applied to cavity sections that are described by a previous (or delayed) position and orientation of the cavitator. The physical basis for the advection delay and the expressions used to determine the vehicle immersion and immersion rate are presented. Analysis and simulations for the time-delayed, non-steady planing system are carried out, and the delay effect in this system is shown to be stabilizing for certain values of the cavitation number that is contrary to previous results that have assumed steady planing force models.


Automatica ◽  
2001 ◽  
Vol 37 (12) ◽  
pp. 2077-2078 ◽  
Author(s):  
N.Harris McClamroch

Sign in / Sign up

Export Citation Format

Share Document