supercavitating vehicles
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 20)

H-INDEX

8
(FIVE YEARS 2)

2020 ◽  
Vol 215 ◽  
pp. 107894
Author(s):  
Li Daijin ◽  
Li Fengjie ◽  
Shi Yazhen ◽  
Dang Jianjun ◽  
Luo Kai

2020 ◽  
Vol 102 ◽  
pp. 102304
Author(s):  
Kangjian Wang ◽  
Guang Rong ◽  
Hongqiao Yin ◽  
Wenjun Yi

2020 ◽  
pp. 107754632094834
Author(s):  
Mojtaba Mirzaei ◽  
Hossein Taghvaei

High-speed supercavitating vehicles are surrounded by a huge cavity of gas and only a small portion of the nose and the tail of the vehicle are in contact with the water which leads to a considerable reduction in skin friction drag and reaching very high speeds. High-speed supercavitating vehicles are usually controlled by the cavitator at the nose which controls the pitch and depth of the vehicle and the control surfaces or fins which control the roll and heading angle of the vehicle using the bank-to-turn maneuvering method. However, control surfaces have disadvantages such as the high drag force and ineffectiveness due to the supercavity. Therefore, the purpose of the present study is to eliminate the fins from high-speed supercavitating vehicles and propose a new bank-to-turn heading control of this novel finless high-speed supercavitating vehicle which is composed of the cavitator at the nose and an oscillating pendulum as the internal actuator. Sliding mode control as a robust method is used for the six-degrees-of-freedom model of this finless high-speed vehicle against exposed disturbances. Some design criteria for the design of the internal pendulum in this finless supercavitating vehicle are presented for the damping coefficient, pendulum mass, and radius.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chuang Huang ◽  
Kai Luo ◽  
Kan Qin ◽  
Daijin Li ◽  
Jianjun Dang

To predict the hydrodynamic characteristics and supercavity shape of supercavitation flows, the numerical model including VOF, cavitation model, and turbulence models is presented and validated by a well-established empirical correlation. The numerical method is then employed to simulate the high-speed supercavitating vehicles with two different types of control surfaces: bow rudders and stern rudders. The hydrodynamic characteristics and influences on the supercavity are compared. By contrast with the stern rudder, the bow rudder with the same wetted area is capable of generating a larger control force and moment. Also, the bow rudder introduces a considerable deformation to the forepart of the supercavity, while the stern rudder provides a negligible influence on the supercavity before it. In addition, the bow rudder is fully wetted, and the lift force only changes with the rudder angle. However, the stern rudder is partly wetted; the lift force is not only determined by the rudder angle but also related to the actual wetted status.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Daijin Li ◽  
Fengjie Li ◽  
Kan Qin ◽  
Chuang Huang ◽  
Kai Luo

Due to the complexity of the cavity/vehicle and oscillation characteristics, streamlined shape integrated design of conventional fully wetted vehicles is not suitable for supercavitating vehicles. In this paper, a set of design criteria is highlighted to optimize the length and streamlined shape of a conical section subjected to realistic design constraints, which integrate the complex characteristics of the cavity/vehicle system under the condition of auto-oscillation of supercavitating vehicles. The auto-oscillation and its time-domain characteristics are determined. By deriving the equation describing the cavity/vehicle relationship and identifying the maximum amplitude of the Euler angle, the cavity/vehicle tangent point criterion is proposed to determine the theoretical optimum value of the length of the conical section. A method of equal cross-sectional area for gas flow is proposed to design the streamlined shape of the conical section. Water tunnel and autonomous flight experiments were carried out to validate the feasibility of the design methodology developed in this work.


Sign in / Sign up

Export Citation Format

Share Document