Effect of the Oscillation of Left Heated Wall on Heat Transfer Enhancement for a Square Cavity Domain

Author(s):  
Ahmed S. Sowayan

The vibration of a left vertical hot wall in a square cavity with thermally insulated vertical walls facing unsteady natural convection is investigated numerically. The cavity is filled with an ideal gas and the top wall is exposed to free stream conditions. Using the primitive variables of velocity and pressure, the staggered grid technique and the marker-and-cell (MAC) method is used to solve the governing equations using the Boussinesq approximation for natural convection. The numerical solution is obtained by using Matlab platform. Sample results are shown in the form of contour plots for pressure, velocity vectors, vorticity, and temperature fields for fixed values of Reynolds number. Detailed analyses of unsteady laminar flow and thermal fields are exhibited over broad ranges of Reynolds number and frequency of the oscillating wall. Systematically-organized computational results based on the MAC method with an explicit formulation indicate enhancement of heat transfer demonstrated by higher average Nusselt number values for selected values of the Reynolds number.

Author(s):  
Serkan Kasapoglu ◽  
Ilker Tari

Three dimensional laminar natural convection flow of and heat transfer in incompressible air between two inclined parallel plates are analyzed with the Boussinesq approximation by using spectral methods. The plates are assumed to be infinitely long in streamwise (x) and spanwise (z) directions. For these directions, periodic boundary conditions are used and for the normal direction (y), constant wall temperature and no slip boundary conditions are used. Unsteady Navier-Stokes and energy equations are solved using a pseudospectral approach in order to obtain velocity and temperature fields inside the channel. Fourier series are used to expand the variables in × and z directions, while Chebyshev polynomials are used to expand the variables in y direction. By using the temperature distribution between the plates, local and average Nusselt numbers (Nu) are calculated. Nu values are correlated with φ, which is the inclination angle, and with Ra·cosφ to compare the results with the literature.


2011 ◽  
Vol 7 (2) ◽  
pp. 37-50 ◽  
Author(s):  
Md. Mustafizur Rahman ◽  
M. Arif Hasan Mamun ◽  
M. Masum Billah ◽  
Saidur Rahman

In this study natural convection flow in a square cavity with heat generating fluid and a finite size heater on the vertical wall have been investigated numerically. To change the heat transfer in the cavity, a heater is placed at different locations on the right vertical wall of the cavity, while the left wall is considered to be cold. In addition, the top and bottom horizontal walls are considered to be adiabatic and the cavity is assumed to be filled with a Bousinessq fluid having a Prandtl number of 0.72. The governing mass, momentum and energy equations along with boundary conditions are expressed in a normalized primitive variables formulation. Finite Element Method is used in solution of the normalized governing equations. The parameters leading the problem are the Rayleigh number, location of the heater, length of the heater and heat generation. To observe the effects of the mentioned parameters on natural convection in the cavity, we considered various values of heater locations, heater length and heat generation parameter for different values of Ra varying in the range 102 to 105. Results are presented in terms of streamlines, isotherms, average Nusselt number at the hot wall and average fluid temperature in the cavity for the mentioned parameters. The results showed that the flow and thermal fields through streamlines and isotherms as well as the rate of heat transfer from the heated wall in terms of Nusselt number are strongly dependent on the length and locations of the heater as well as heat generating parameter.DOI: 10.3329/jname.v7i2.3292 


1970 ◽  
Vol 36 ◽  
pp. 27-37 ◽  
Author(s):  
Sumon Saha ◽  
Md. Tofiqul Islam ◽  
Mohammad Ali ◽  
Md. Arif Hassan Mamun ◽  
M Quamrul Islam

Transverse mixed convection is studied numerically in a vented enclosure with constant heat flux from uniformly heated bottom wall. An external airflow enters the enclosure through an opening in one vertical wall and exits from another opening in the opposite wall. The two-dimensional mathematical model includes the system of four partial differential equations of continuity, linear momentum and energy, solved by the finite element method. Flow fields are investigated by numerical simulations for air flowing with a Reynolds number in the range 50 ≤ Re ≤ 1000, for Richardson numbers: 0 ≤ Ri ≤ 10. Four different locations of inlet and outlets are introduced to analyze the effect of heat transfer in terms of velocity and temperature fields within the enclosure. The computational results show that the location of inlet and outlets alters significantly the temperature distribution in the flow fields and the heat transfer across the heated wall of the cavities. Empirical correlation is developed for relations using Nusselt number, Reynolds number and Richardson number, based on the enclosure height.   Keywords: Mixed convection, finite element method, vented enclosure, Richardson number.Journal of Mechanical Engineering Vol.36 Dec. 2006 pp.27-37DOI = 10.3329/jme.v36i0.808


2011 ◽  
Vol 15 (suppl. 2) ◽  
pp. 357-365 ◽  
Author(s):  
Antonio Campo ◽  
Jane Chang ◽  
El Ridouane

This paper addresses the heat transfer performance of natural convection flows in three different, (but related) cavities in the form of: a square, isosceles right-angled triangle, and vertical rectangle with aspect ratio 2:1. The isosceles right-angled triangular cavity is derived from a square cavity when cut in half diagonally, whereas the vertical rectangular cavity is derived from a square cavity when cut in half vertically. In the three cavities, the left vertical wall is the common wall heated. The buoyant air flow is characterized by height-based Rayleigh numbers ranging from a conduction-dominant to up to 106 for the laminar natural convection regime. Employing the finite volume method, the velocity and temperature fields as well as the mean convective coefficients evaluated at the common heated vertical wall are numerically determined for the isosceles right-angled triangular cavity. For this cavity, flow streamlines and temperature contours are presented in graphical form and some numerical results are validated against published experimental measurements. A one-to-one comparison for the heat transfer performance of the three interconnected cavities is reported in tabulated form.


Author(s):  
MM Touhid Hossain ◽  
Rita Mojumder ◽  
Mohammad Arif Hossain

In the present study we have confined our attention to the laminar boundary layer equations for the unsteady free convection flow over a heated horizontal semi-infinite porous plate by simplifying them using the Boussinesq approximation. Similarity requirements for an incompressible fluid are sought on the basis of detailed analysis in order to reduce the governing coupled partial differential equations into a set of ordinary differential equations. Numerical results are displayed graphically for some selected values of the controlling parameters provided by the similarity transformation. The influence of suction and blowing on the flow and temperature fields and other flow factors like skin friction and heat transfer coefficients are extensively investigated. It is found that a small value of suction or blowing play a vital role on the patterns of flow and temperature fields as well as on the coefficients of skin friction and heat transfer. Keywords: Natural convection; Boussinesq approximation; Similarity transformation; Suction; blowing. DOI: http://dx.doi.org/10.3329/diujst.v6i1.9333 DIUJST 2011; 6(1): 43-51


In this paper, we study the heat transfer in turbulent natural convection in a two- dimensional cavity with a trapezoidal section and isoscales filled out of air with as height H =2.5 m. In these conditions, the side walls are differentially heated while the horizontal walls are adiabatic. The k-ε turbulence model with a small Reynolds number was integrated in our calculation code. The governing equations of the problem were solved numerically by the commercial CFD code Fluent; which is based on the finite volume method and the Boussinesq approximation. The elaborated model is validated from the experimental results in the case of the turbulent flow in a square cavity. Then, the study was related primarily to the influence of the slope of the side walls of the cavity on the dynamic behavior and the heat transfer within the cavity.


2012 ◽  
Vol 17 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Tapas Ray Mahapatra ◽  
Dulal Pal ◽  
Sabyasachi Mondal

Influence of thermal radiation on natural-convection flow in a square cavity filled with a porous medium of uniform porosity having isothermal vertical walls and adiabatic horizontal walls, has been studied numerically by using finite-difference method with staggered grid distribution. The simulation is performed by considering both Darcian and non-Darcian models. Governing momentum and energy equations are solved numerically to obtain velocity and temperature fields for various values of different physical parameters. It is seen that increasing the thermal radiation parameter enhances the local Nusselt number on the left vertical wall whereas the reverse effects are observed due to increase in the heat generating parameter when Ra = 109. The temperature at the mid-horizontal plane decreases with increase in the value of Rayleigh number up to a certain distance from the left vertical wall and beyond that distance the opposite trend is observed. The temperature at the mid-horizontal plane increases with increase in the value of heat generating parameter.


Author(s):  
R. L. Marvel ◽  
F. C. Lai

A numerical study has been performed to further investigate the flow and temperature fields in layered porous cavity. The geometry considered is a square cavity with 3 or 4 non-uniform sublayers and is subjected to differential heating from the vertical walls. The results obtained are used to further evaluate the feasibility of using the lumped-system analysis for heat transfer in layered porous cavities as proposed in the previous study. To this end, the effective permeabilities based on the arithmetic and harmonic averaging schemes are examined for their use in the conjunction with the lumped-system analysis.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Yuping Duan ◽  
S. F. Hosseinizadeh ◽  
J. M. Khodadadi

The effects of insulated and isothermal thin baffles on pseudosteady-state natural convection within spherical containers were studied computationally. The computations are based on an iterative, finite-volume numerical procedure using primitive dependent variables. Natural convection effect is modeled via the Boussinesq approximation. Parametric studies were performed for a Prandtl number of 0.7. For Rayleigh numbers of 104, 105, 106, and 107, baffles with three lengths positioned at five different locations were investigated (120 cases). The fluid that is heated adjacent to the sphere rises replacing the colder fluid, which sinks downward through the stratified stable thermal layer. For high Ra number cases, the hot fluid at the bottom of the sphere is also observed to rise along the symmetry axis and encounter the sinking colder fluid, thus causing oscillations in the temperature and flow fields. Due to flow obstruction (blockage or confinement) effect of baffles and also because of the extra heating afforded by the isothermal baffle, multi-cell recirculating vortices are observed. This additional heat is directly linked to creation of another recirculating vortex next to the baffle. In effect, hot fluid is directed into the center of the sphere disrupting thermal stratified layers. For the majority of the baffles investigated, the Nusselt numbers were generally lower than the reference cases with no baffle. The extent of heat transfer modification depends on Ra, length, and location of the extended surface. With an insulated baffle, the lowest amount of absorbed heat corresponds to a baffle positioned horizontally. Placing a baffle near the top of the sphere for high Ra number cases can lead to heat transfer enhancement that is linked to disturbance of the thermal boundary layer. With isothermal baffles, heat transfer enhancement is achieved for a baffle placed near the bottom of the sphere due to interaction of the counterclockwise rotating vortex and the stratified layer. For some high Ra cases, strong fluctuations of the flow and thermal fields indicating departure from the pseudosteady-state were observed.


Sign in / Sign up

Export Citation Format

Share Document