Study on a Cell Mechanosensing System by Measuring Structural Deformation and Biochemical Response

Author(s):  
Atsushi Horiguchi ◽  
Toshihiko Shiraishi

Mechanical stimulation induces new bone formation in vivo and promotes the metabolic activity and the gene expression of osteoblasts in vitro. It was reported that biochemical signals of osteoblasts to sense mechanical stimulation are activated according to their actin cytoskeletal deformation. However, there have been not so many researches on the relationship between cytoskeletal deformation and biochemical response. Here we show an original method to investigate a cell mechanosensing system and the quantitative relationship between the deformation of cytoskeletal structure and the change of intracellular calcium ion concentration as biochemical response in a living cell stimulated by a micropipette. Gene transfection of green fluorescent protein to osteoblastic cells enabled visualization of actin in cells. When local deformation was applied to a single osteoblastic cell by a micropipette, the displacement distribution of cytoskeletal structure in the whole cell was automatically obtained from the two images of the cell before and after deformation by using Kanade-Lucas-Tomasi (KLT) method. Intracellular calcium ion response to mechanical stimulation was measured as the spatial and temporal changes of intensity of Fura Red loaded to a cell. As a result, we obtained the quantitative relationship between structural deformation and biochemical response of a cell and found that the change of calcium ion concentration increases with increasing the displacement of actin cytoskeleton. It indicates that the deformation of actin cytoskeleton is highly related to the cell mechanosensing system.

1986 ◽  
Vol 103 (2) ◽  
pp. 439-450 ◽  
Author(s):  
G W Conrad ◽  
T J Rink

Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in cell suspensions. These results suggest that an increase in [Ca2+]i may be an early event in PAF activation of macrophages.


1999 ◽  
Vol 145 (6) ◽  
pp. 1265-1276 ◽  
Author(s):  
Pak-ming Lau ◽  
Robert S. Zucker ◽  
David Bentley

In neuronal growth cones, cycles of filopodial protrusion and retraction are important in growth cone translocation and steering. Alteration in intracellular calcium ion concentration has been shown by several indirect methods to be critically involved in the regulation of filopodial activity. Here, we investigate whether direct elevation of [Ca2+]i, which is restricted in time and space and is isolated from earlier steps in intracellular signaling pathways, can initiate filopodial protrusion. We raised [Ca2+]i level transiently in small areas of nascent axons near growth cones in situ by localized photolysis of caged Ca2+ compounds. After photolysis, [Ca2+]i increased from ∼60 nM to ∼1 μM within the illuminated zone, and then returned to resting level in ∼10–15 s. New filopodia arose in this area within 1–5 min, and persisted for ∼15 min. Elevation of calcium concentration within a single filopodium induced new branch filopodia. In neurons coinjected with rhodamine-phalloidin, F-actin was observed in dynamic cortical patches along nascent axons; after photolysis, new filopodia often emerged from these patches. These results indicate that local transient [Ca2+]i elevation is sufficient to induce new filopodia from nascent axons or from existing filopodia.


1995 ◽  
Vol 268 (1) ◽  
pp. F145-F154 ◽  
Author(s):  
R. L. Hebert ◽  
L. Regnier ◽  
L. N. Peterson

Prostaglandin E2 (PGE2) inhibits vasopressin-stimulated water conductivity (AVP-Lp) and inhibits Na+ reabsorption in the rabbit cortical collecting duct (CCD). Inhibition of Na+ reabsorption is mediated by increased intracellular calcium ion concentration ([Ca2+]i). Prostacyclin (PGI2) has also been shown to inhibit Na+ reabsorption in the CCD. The present studies were designed to examine the effect of the PGI2 agonist, Iloprost (ILP), on AVP-Lp and [Ca2+ in the isolated perfused rabbit CCD and to determine whether ILP activates different receptors than PGE2. ILP and PGE2 each maximally inhibited AVP-Lp equipotently at 10(-7) M. When CCDs were exposed to PGE2 and ILP simultaneously, or if PGE2 was added in the presence of ILP, inhibition of AVP-Lp was additive. Additivity was not observed if the PGI2 agonist, carbaprostacyclin (c-PGI2), was added with ILP, or if the PGE2 agonist, sulprostone, was added with PGE2, or if ILP was added to CCDs preexposed to PGE2. In fura 2-loaded CCD, ILP and PGE2 added separately increased [Ca2+]i. The response to c-PGI2 could be desensitized by prior exposure to ILP. ILP did not cause desensitization to PGE2, but PGE2 could desensitize the CCD to ILP. We conclude that PGI2 inhibits AVP-Lp by activation of a novel IP3 prostacyclin receptor and increases [Ca2+]i by activation of an IP1 prostacyclin receptor in the rabbit CCD. Functional evidence is presented that PGI2 cannot occupy PGE2 receptors and that PGE2 can occupy but cannot activate PGI2 receptors linked to inhibition of AVP-Lp.


Sign in / Sign up

Export Citation Format

Share Document