Evaluation of Metal Lattice Structures With X-Ray Micro-Computed Tomography: Dimensional Accuracy and Manufacturability

Author(s):  
Tuomas Puttonen

Abstract Additive manufacturing enables product designers to incorporate complexity onto their designs on multiple size scales. Computer-aided design methods, such as topology optimization and lattice design, have emerged as software tools for applications where part consolidation and weight reduction are desired. Still, a more delicate control of hierarchical complexity and submillimeter-sized features would unlock a widely unexplored frontier of new design possibilities. However, the complexity of a design can respectively affect the manufacturing process. In powder bed fusion, the diameter, power and speed of the laser spot and the resulting size of the melt pool define the attainable feature resolution and accuracy in comparison with the original design intent. X-ray computed tomography can be a useful tool in validation and provide a detailed, volumetric representation of a part with internal features. This paper examines the design accuracy of 316L metal lattice structures and density of solid cubes with industrial X-ray micro-computed tomography. Accessible tools with open source software are presented for CT data analysis. The nominal values are compared against the as-built and CT scanned samples for surface area, volume, and dimensional accuracy. A CT voxel size of 30–40 μm allows to identify printability issues and general trends in the part density in comparison to the geometry changes. However, a finer voxel size in the submicron range would be required to properly detect and localize internal porosity and evaluate surface topography.

2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


2018 ◽  
Author(s):  
Zoë E. Wilbur ◽  
◽  
Arya Udry ◽  
Arya Udry ◽  
Daniel M. Coleff ◽  
...  

2021 ◽  
Vol 28 ◽  
pp. 100190
Author(s):  
Jaqueline Auer ◽  
Michael Reiter ◽  
Sascha Senck ◽  
Andreas Reiter ◽  
Johann Kastner ◽  
...  

Author(s):  
Z. Xiao ◽  
T. Stait‐Gardner ◽  
S.A. Willis ◽  
W.S. Price ◽  
F.J. Moroni ◽  
...  

2019 ◽  
Vol 207 ◽  
pp. 304-315 ◽  
Author(s):  
Guohao Fang ◽  
Weijian Ding ◽  
Yuqing Liu ◽  
Jianchao Zhang ◽  
Feng Xing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document