Numerical Assessment of Dented Pipe Using Inline Inspection Data

Author(s):  
Parththeeban Murugathasan ◽  
Ashutosh Sutra Dhar ◽  
Suborno Debnath ◽  
Abu Muntakim ◽  
Kshama Roy

Abstract The current finite element (FE) assessment methods of dented pipes are based on specific dent profiles, which are generally created based on the shape of indenters. However, the actual dent profile in real case scenarios is mostly irregular in shape, depending on the cause of damage. In this paper, FE analyses of dented pipes using inline inspection (ILI) data are presented. Based on the ILI data, the dent profile is generated by applying the nodal displacements to all the pipe nodes. The validation of this nodal displacement approach is discussed in this paper. Besides, a parametric study is carried out to study the behavior of dent for different dent depth, pipe geometry, and pipe grades. The significance of residual stresses generated during the dent formation on the behavior of dented pipe during the service life is also discussed. Finally, the remaining life estimation of dented pipes according to the API 579-1 is presented using FE analysis results.

Author(s):  
David Shanks ◽  
Rob Leeson ◽  
Corina Blaga ◽  
Rafael G. Mora

Implementation of Integrity Management Programs (IMP) for pipelines has motivated the design of Fitness-For-Service methodologies to assess Stress Corrosion Cracking (SCC) and fatigue-dependent features reported by Ultrasonic Crack Detection (UTCD) In-Line Inspections. The philosophical approach defined by the API 579 [1] “Fitness-For-Service” from the petrochemical industry in conjunction with Risk-based standards and regulations (i.e. CSA-Z662-2003 [2] and US DOT 49 Parts 192 [3] and 195 [4]) and in-line inspection validation (i.e. API 1163 [5]) approaches from the pipeline industry have provided the engineering basis for ensuring the safety, reliability and continued service of the in-line inspected pipelines. This paper provides a methodology to develop short and long-term excavation and re-inspection programs through a four (4) phase-process: Pre-Assessment, Integrity Criticality Assessment, Remediation and Repair, Remaining Life Extension and In-Service Monitoring. In the first phase, Pre-assessment, areas susceptible to Stress Corrosion Cracking (SCC) and fatigue-dependent features are correlated to in-line inspection data, soil modeling, pipeline and operating conditions, and associated consequences in order to provide a risk-based prioritization of pipeline segments and technical understanding for performing the assessment. The second phase, Integrity Criticality Assessment, will develop a short-term maintenance program based on the remaining strength of the in-line inspection reported features previously correlated, overlaid and risk-ranked. In addition, sites may be identified in Phase 1 for further investigation. In the third phase, a Remediation and Repair program will undertake the field investigation in order to repair and mitigate the potential threats as well as validating the in-line inspection results and characterization made during the Pre-assessment and Integrity Criticality Assessment (Phases 1 & 2). With the acquired knowledge from the previous three (3) phases, a Remaining Life Extension and In-Service Monitoring program will be developed to outline the long-term excavation and re-inspection program through the use of SCC and Fatigue crack growth probabilistic modeling and cost benefit analysis. The support of multiple Canadian and US pipeline operating companies in the development, validation and implementation of this methodology made this contribution possible.


2016 ◽  
Vol 126 ◽  
pp. 129-137 ◽  
Author(s):  
Igor A. Chaves ◽  
Robert E. Melchers ◽  
Lizhengli Peng ◽  
Mark G. Stewart

Author(s):  
K. Nihei ◽  
O. Muragishi ◽  
T. Kobayashi ◽  
K. Ohgaki ◽  
A. Umeda

1999 ◽  
Vol 6 (4) ◽  
pp. 233-243 ◽  
Author(s):  
N.K Mukhopadhyay ◽  
S.Ghosh Chowdhury ◽  
R.K Sinha ◽  
D.K Bhattacharya ◽  
S Chaudhuri

Author(s):  
Rhett Dotson ◽  
Ryan Sager ◽  
Fernando Curiel ◽  
Marcus Le Roy

Abstract Pipeline dents have historically been regulated and assessed using dent depth as the primary metric. Many of the earliest analytical models for dent remaining life are based upon depth. Current assessment guidelines from ASME and the Code of Federal Regulations utilize depth as a primary metric. Consequently, ILI geometry tool capabilities are stated in terms of dent depth. However, the best modern dent assessments, including both strain and fatigue assessments, are based on dent shape. At a minimum, these models require both axial and circumferential dent profiles, or the models may utilize the full three-dimensional shape of the dent. The utilization of advanced dent assessments is expected to grow in the future as the methods are incorporated into API Recommended Practices and US regulations. While operators may have confidence in the ability of an ILI tool to confidently capture the dent depth, the shape of a dent is a recent consideration that is not addressed by current tool specifications. Unlike depth alone, dent shape is often a function of sensor coverage, speed, and caliper technology. Unfortunately, there is virtually no information available on the reliability of these assessment methods when they are based on ILI data. To-date, there have been no published comparisons examining the variation in strain or fatigue life in identical dents between multiple inspections. The reliability of these dent assessment methods is critical when choosing safety factors or reinspection intervals. This study presents a first look at the repeatability of strain and remaining life assessments based on two separate geometry inspection using different technologies. The study examines dent strain according to ASME B31.8 and fatigue life calculated using shape factors and finite element methods for 257 dents. The paper examines the variation in each of the methods and provides guidance on how users should understand the results when they are based on a single geometry inspection.


Sign in / Sign up

Export Citation Format

Share Document