An Adaptive Perturb and Observe Maximum Power Point Tracking System for Photovoltaic Arrays

Author(s):  
Mohammad Serhan ◽  
Sami H. Karaki ◽  
Lena R. Chaar

This paper presents a maximum power point (MPP) hardware tracking system based on an adaptive Perturb and Observe (PAO) algorithm. Under a given solar and temperature condition the search for the MPP starts with a large perturbation step. When a drop in the delivered power is detected, the size of the step is halved and the direction of duty cycle change is reversed. Eventually the MPP will be tracked by small perturbation step (e.g. 1/ 255). When tracking at a maximum and a sudden change occurs in the atmospheric conditions, the system will try to reach the new MPP, with an adaptive perturbation step size that is allowed to increase after 4 consecutive increases or decrease in the duty cycle leading to increase in power delivery. This adaptive PAO algorithm forces the system to respond fairly quickly to any changes in the solar radiation or temperature level irrespective of where the previous operating point MPP was and without deteriorating the tracking efficiency. A tracking efficiency of about 96% was achieved using a very simple controller.

Maximum power point tracking is a commonly used technique for extracting maximum possible power from solar photovoltaic (PV) systems under all conditions. Various methods used for implementation of MPPT algorithm, out of those methods, perturb and observe (P&O) is very popular and commonly using method owing to its simplicity, easy implementation and highly efficient nature. However, P&O algorithm has disadvantage that it suffers from drift phenomenon in which during sudden change in atmospheric conditions, the algorithm drifts away from the maximum power point (MPP). This paper proposes modifications in the conventional P&O algorithm to overcome the drifting of MPP during suddenly changing atmospheric conditions. This algorithm takes change in current into consideration along with change in voltage and power and is verified using MATLAB/Simulink. DC/DC control is achieved using SEPIC converter and simulation results of the proposed algorithm show that the system can track the MPP in transient whether conditions and drifting is avoided


Author(s):  
Mustapha Elyaqouti ◽  
Safa Hakim ◽  
Sadik Farhat ◽  
Lahoussine Bouhouch ◽  
Ahmed Ihlal

In order to maximize the electric energy production of a photovoltaic generator (PVG), the maximum power point tracking (MPPT) methods are usually used in photovoltaic systems. The principle of these techniques is to operate the PVG to the maximum power point (MPP), which depends on the environmental factors, such as solar irradiance and ambient temperature, ensuring the optimal power transfer between PVG and load. In this paper, we present the implementation of two digital MPPT commands using the Arduino Mega type. The two proposed MPPT controls are based on the algorithm of perturb and observe (P&O), the first one with fixed perturbation step and the second one with two perturbations step varying with some conditions. The experimental results show that the P&O algorithm with variable step perturbation gives good results compared to the P&O algorithm with fixed perturbation step in terms of the time response and the oscillations around the MPP.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1234
Author(s):  
Sanaz Jalali Zand ◽  
Kuo-Hsien Hsia ◽  
Naser Eskandarian ◽  
Saleh Mobayen

This paper presents a new version of the incremental conductance algorithm for more accurate tracking of the maximum power point (MPP). The modified algorithm is called self-predictive incremental conductance (SPInC), and it recognizes the operational region. It is capable of detecting dynamic conditions, and it detects sudden changes in power resulting from changes in the intensity of radiation or temperature. By selecting the appropriate step size, it obtains maximum power from the panel at any moment. The improved algorithm reduces output power ripple and increases the efficiency of the system by detecting the operating area and selecting the appropriate step size for each region. The SPInC algorithm divides the system’s work areas into three operating zones. It calculates the size of the appropriate step changes for each region after identifying the regions, which allows for more accurate tracking of the MPP and increases the system efficiency at a speed equal to the speed of the conventional method. These additional operations did not result in a system slowdown in the tracking maximum power. According to the MATLAB/Simulink simulation results, the SPInC algorithm is more efficient than conventional InC, and the ripple output power is reduced. SPInC is also compared to the improved perturb and observe (P&O) algorithm. In general, SPInC can compete with the popular algorithms that have been recently proposed for MPPT in the other researches.


Author(s):  
Essam H. Abdou ◽  
Mohamed M. Mohamed M. Aly ◽  
Mohamed M. Mohamed M. Aly ◽  
Mohamed M. Mohamed M. Aly

This paper proposes a new adaptive perturb and observe (AD-PO) algorithm for maximum power point tracking (MPPT) of DFIG based Wind Energy Conversion Systems (WECSs).The proposed algorithm is able to solve the limitations of conventional fixed step-size perturb and observe (PO) algorithm. It is able to achieve the optimum power with small time and oscillations compared with the conventional P&O techniques. This algorithm is mainly based on dividing the power-speed curve into four sectors by comparing the power-speed curve and a special synthesize curve. Hence, the selection of appropriate dynamic perturbation step-size (DPSS) of rotor speed is changed related to the operating sector. For the two sectors far from the maximum power point (MPP), a large DPSS is applied. Otherwise, the controller utilizes a small DPSS. Theproposed algorithm is validated using a large-scale 1.5 MW double-fed induction generator (DFIG); where the stator terminals of DFIG are connected directly to the grid and the rotor terminals of DFIG are connected to the electric gridvia a back-to-back converter (BTBC). The proposed algorithm has been implemented using MATLAB/SIMULINK. The results prove the efficient operation of the proposed algorithm in term of the fast system response compared with traditional P&O techniques.


Author(s):  
Mohamed Amine Abdourraziq ◽  
Mohamed Maaroufi

<p>Photovoltaic (PV) technology is one of the important renewable energy resources as it is pollution free and clean. PV systems have a high cost of energy and low eciency, consequently, they not made it fully attractive as an alternative option for electricity users. It is essential that PV systems are operated to extract the maximum possible power at all times. Maximum Power Point (MPP) changes with atmospheric conditions (radiation and temperature), it is dicult to sustain MPP at all atmospheric levels. Many Maximum Power Point Tracking (MPPT) have been developed and implemented. These methods varied according to several aspects such as a number of sensors used, complexity, accuracy, speed, ease of hardware implementation, cost and tracking eciency. The MPPT techniques presented in the literature indicate that Variable step size of Perturb &amp; Observe (VP&amp;O), Variable step size of Incremental Conductance (VINC) and Perturb &amp; Observe (P&amp;O) using Fuzzy Logic Controller (FLC) can achieve reliable global MPPT with low cost and complexity and be easily adapted to dierent PV systems. In this paper, we established theoretical and experimental verication of the main MPPT controllers (VP&amp;O, VINC, and P&amp;O using FLC MPPT algorithms) that most cited in the literature. The three MPPT controller has been tested by MATLAB/Simulink to analyze each technique under dierent atmospheric conditions. The experimental results show that the performance of VINC and P&amp;O using FLC is better than VP&amp;O in term of response time.</p>


Author(s):  
RATNA SUSANA ◽  
KEMAL ROSYIDI ◽  
DECY NATALIANA

ABSTRAKKondisi sel surya sangat dipengaruhi oleh suhu dan intensitas matahari yang berperilaku dinamis, sehingga sel surya sulit mencapai titik tegangan dan arus maksimumnya. Sedangkan berdasarkan kurva karakteristik Daya-Tegangan sel surya, terdapat satu titik daya keluaran maksimum pada saat tertentu. Titik daya maksimum tersebut dapat dilacak menggunakan teknik Maximum Power Point Tracking (MPPT). Penerapan teknik MPPT pada modul surya menggunakan konverter DC-DC topologi synchronous buck yang dilakukan pada penelitian ini menggunakan metode perturb and observe. Pengaturan duty cycle PWM oleh Arduino Uno pada konverter DC-DC, akan menggeser titik daya modul surya agar selalu berada pada kondisi maksimum. Efisiensi konverter synchronous buck yang dihasilkan paling rendah adalah 43,73% pada duty cycle 10% dan tertinggi 95,6% pada duty cycle 100%. Hasil pengujian tanpa MPPT didapatkan daya keluaran modul surya tertinggi sebesar 16.49 Watt, dan pada saat yang sama ketika pengujian dilakukan dengan menerapkan teknik MPPT, maka daya keluaran modul surya yang terlacak adalah sebesar 23.60 Watt.Kata kunci: modul surya, MPPT, synchronous buck, perturb and observe.ABSTRACTThe condition of solar cells is very influenced by the temperature and the sun intensity which behaves dynamically, so that solar cells are difficult to reach the maximum point of  voltage and current. Whereas based on the Power-Voltage characteristics curve of  solar cells, there is a maximum output power point at any given moment. The maximum power point can be tracked using Maximum Power Point Tracking (MPPT) technique. Application of MPPT technique on solar module using DC-DC converter synchronous buck topology which is done in this research using perturb and observe method. PWM duty cycle setting by Arduino Uno in DC-DC converter, will shift the solar module power point to always be in maximum condition. The lowest synchronous buck converter efficiency is 43.73% in the 10% duty cycle and the highest is 95.6% in the 100% duty cycle. The test results without MPPT obtained the highest solar module output power of 16.49 Watt, and at the same time when the test is done by applying the MPPT technique, the tracked solar module output power is 23.60 Watt.Keywords: solar module, MPPT, synchronous buck, perturb and observe.


Author(s):  
Eman Eltaher, Abdel-Raheem Youssef, Essam E. M. Mohamed

Maximum power point tracking (MPPT) techniques work to track the maximum power from the PV cell. A lot of conventional MPPT techniques, such as the perturb and observe (P&O), succeed in catch the maximum power point (MPP) with a good performance. However, they suffer many problems during fast varying weather conditions, where slow time response and high oscillations are dominant. Also, it is difficult to select the right direction for new steps. This article illustrates two new P&O MPPT techniques for PV generation systems. They operate on the power-voltage (P-V) curve under different weather conditions. The first is an adaptive perturb and observe (A-PO) technique, which changes the perturbation step-size adeptly to deal with the rapidly varying weather conditions. The second is a hybrid perturb and observe technique (H-PO), which uses a variable step-size according to the location of the operating point relative to the MPP. The MATLAB/SIMULINK software is used to study the truth of the proposed techniques. The results demonstrate that both techniques attain the MPP faster than the conventional techniques and at a reduced oscillation rate.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Libin Xu ◽  
Ruofa Cheng ◽  
Jiajing Yang

The maximum power point tracking (MPPT) is a strategy that allows imposing the PV array operation point on the maximum power point (MPP) or close to it under any environmental condition. The conventional incremental conductance (INC) algorithm is the most popular algorithm. But due to the fixed step size, its response speed is low under the rapid change of the solar irradiation level or load resistance. In this paper, a new MPPT technique is proposed to enhance the response speed. It consists of two stages: (1) the computing stage and (2) the regulating stage. The computing stage includes the coarse positioning operation and fine positioning operation. And an initial value of the duty cycle is generated in the computing stage, according to the characteristics of the DC-DC converter and the characteristics of the I‐V curve. The regulating stage regulates the duty cycle of the DC-DC converter with a small step size, which can improve the tracking efficiency. And the computing stage can enhance the response speed. A simulation comparison of the proposed MPPT technique with other techniques is carried out in MATLAB/Simulink under different scenarios. The simulation results reveal that the response of the proposed algorithm is 4.6 times faster than that of the INC under these scenarios, and the proposed algorithm has higher efficiency.


2018 ◽  
Vol 22 (1) ◽  
pp. 19 ◽  
Author(s):  
Deepthi Pilakkat ◽  
S. Kanthalakshmi

The characteristic of a Photovoltaic (PV) panel is most affected by the incident solar insolation temperature, shading, and array configuration. Maximum power point tracking (MPPT) algorithms have an important role in harvesting maximum power from the solar PV arrays. Among the various MPPT methods Perturb and Observe (P&O) algorithm is the simple and efficient one. However, there will be a drift problem in case of increase in insolation. This drift will be more under rapid increase in insolation. To improve the speed of tracking the Maximum Power Point (MPP), a variable step size P&O (VSSPO) is developed. The drift problem will be more in the case of VSSPO as it will have a larger step size for an increase in insolation. In this paper, the maximum output power extraction from Solar PV under rapidly increasing insolation conditions by a drift free P&O (DFP&O) as well as drift free VSSPO (DFVSSPO) method is presented.


Sign in / Sign up

Export Citation Format

Share Document