Kilometer-Long Optical Fiber Sensor for Real-Time Railroad Infrastructure Monitoring to Ensure Safe Train Operation

Author(s):  
Yi Bao ◽  
Genda Chen ◽  
Weina Meng ◽  
Fujian Tang ◽  
Yizheng Chen

This study is aimed to develop a real-time safety monitoring of kilometer-long joint rails using a distributed fiber optic sensor. The sensor measures the distribution of Brillouin frequency shift along its length with pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA). The measurement distance and spatial resolution can be up to 25 km and 2 cm, respectively. The fiber optic sensor was first characterized and calibrated for distributed strain and temperature measurement, and then instrumented on a small-scale joint rail-like specimen in laboratory. The specimen was loaded at room temperature, and its strain distribution along the sensor was measured using a Neubrescope with high accuracy and spatial resolution. Given a gage length, the joint open change was determined and visibly identified from the measured strain distribution. Finally, an implementation plan of distributed sensors on a railway is introduced, including sensor deployment, sensor repair when broken, and cost analysis. The gage length at a crack is an important parameter in sensor deployment and investigated using finite element analysis. The results indicate that the distributed sensor can be used successfully to monitor the strain and temperature distributions in joint rails.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Kevin (Wenhai) Li ◽  
Michel Gaudet

Abstract A method to monitor the mechanical behavior and identify crack location and growth in a concrete structure element using a distributed fiber optic sensor (FOS) system is demonstrated experimentally by testing concrete specimens in four-point bending. The sensor system consisted of an optical frequency domain reflectometry (OFDR) interrogator unit paired with an all-grating sensing fiber that was bonded to the surface of the concrete test specimen. Strain measurements with high spatial resolution of <10 mm were obtained at various points along a single fiber cable. Large strain values at the crack locations indicated strain concentrations that could be used to assess the crack growth. The distributed sensing system demonstrated the capability to detect localized, early stage cracks, with crack width smaller than 0.1 mm, well before they become observable by visual inspection.


1997 ◽  
Vol 31 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Y. M. Liu ◽  
C. Ganesh ◽  
J. P. H. Steele ◽  
J. E. Jones

2015 ◽  
Vol 31 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Takuya OKAZAKI ◽  
Kenichiro IMAI ◽  
Shin Y. TAN ◽  
Yun T. YONG ◽  
Faidz A. RAHMAN ◽  
...  

2017 ◽  
Author(s):  
Ping Lu ◽  
Kevin Byerly ◽  
Michael Buric ◽  
Paul Zandhuis ◽  
Chenhu Sun ◽  
...  

1998 ◽  
Vol 14 (5) ◽  
pp. 293-321 ◽  
Author(s):  
MICHAEL D. McDONAGH ◽  
JEFFREY A. LAMAN ◽  
TIMOTHY E. McDEVITT ◽  
KARL M. REICHARD

Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Adel Abdallah ◽  
Mohamed M. Fouad ◽  
Hesham N. Ahmed

Purpose The purpose of this paper is to introduce a novel intensity-modulated fiber optic sensor for real-time intrusion detection using a fiber-optic microbend sensor and an optical time-domain reflectometer (OTDR). Design/methodology/approach The proposed system is tested using different scenarios using person/car as intruders. Experiments are conducted in the lab and in the field. In the beginning, the OTDR trace is obtained and recorded as a reference signal without intrusion events. The second step is to capture the OTDR trace with intrusion events in one or multiple sectors. This measured signal is then compared to the reference signal and processed by matrix laboratory to determine the intruded sector. Information of the intrusion is displayed on an interactive screen implemented by Visual basic. The deformer is designed and implemented using SOLIDWORKS three-dimensional computer aided design Software. Findings The system is tested for intrusions by performing two experiments. The first experiment is performed for both persons (>50 kg) in the lab and cars in an open field with a car moving at 60 km/h using two optical fiber sectors of lengths 200 and 500 m. For test purposes, the deformer length used in the experiment is 2 m. The used signal processing technique in the first experiment has some limitations and its accuracy is 70% after measuring and recording 100 observations. To overcome these limitations, a second experiment with another technique of signal processing is performed. Research limitations/implications The system can perfectly display consecutive intrusions of the sectors, but in case of simultaneous intrusions of different sectors, which is difficult to take place in real situations, there will be the ambiguity of the number of intruders and the intruded sector. This will be addressed in future work. Suitable and stable laser power is required to get a suitable level of backscattered power. Optimization of the deformer is required to enhance the sensitivity and reliability of the sensor. Practical implications The proposed work enables us to benefit from the ease of implementation and the reduced cost of the intensity-modulated fiber optic sensors because it overcomes the constraints that prevent using the intensity-modulated fiber optic sensors for intrusion detection. Originality/value The proposed system is the first time long-range intensity-modulated fiber optic sensor for intrusion detection.


Sign in / Sign up

Export Citation Format

Share Document