cellular oxygen
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 34)

H-INDEX

37
(FIVE YEARS 4)

Author(s):  
Lauren Eades ◽  
Michael Drozd ◽  
Richard M. Cubbon

Innate immune function is shaped by prior exposures in a phenomenon often referred to as ‘memory’ or ‘training’. Diverse stimuli, ranging from pathogen-associated molecules to atherogenic lipoproteins, induce long-lasting training, impacting on future responses, even to distinct stimuli. It is now recognised that epigenetic modifications in innate immune cells, and their progenitors, underpin these sustained behavioural changes, and that rewired cellular metabolism plays a key role in facilitating such epigenetic marks. Oxygen is central to cellular metabolism, and cells exposed to hypoxia undergo profound metabolic rewiring. A central effector of these responses are the hypoxia inducible factors (or HIFs), which drive transcriptional programmes aiming to adapt cellular homeostasis, such as by increasing glycolysis. These metabolic shifts indirectly promote post-translational modification of the DNA-binding histone proteins, and also of DNA itself, which are retained even after cellular oxygen tension and metabolism normalise, chronically altering DNA accessibility and utilisation. Notably, the activity of HIFs can be induced in some normoxic circumstances, indicating their broad importance to cell biology, irrespective of oxygen tension. Some HIFs are implicated in innate immune training and hypoxia is present in many disease states, yet many questions remain about the association between hypoxia and training, both in health and disease. Moreover, it is now appreciated that cellular responses to hypoxia are mediated by non-HIF pathways, suggesting that other mechanisms of training may be possible. This review sets out to define what is already known about the topic, address gaps in our knowledge, and provide recommendations for future research.


2021 ◽  
Vol 28 (12) ◽  
pp. 757-772
Author(s):  
Luise Eckardt ◽  
Maria Prange-Barczynska ◽  
Emma J Hodson ◽  
James W Fielding ◽  
Xiaotong Cheng ◽  
...  

Despite a general role for the HIF hydroxylase system in cellular oxygen sensing and tumour hypoxia, cancer-associated mutations of genes in this pathway, including PHD2, PHD1, EPAS1 (encoding HIF-2α) are highly tissue-restricted, being observed in pseudohypoxic pheochromocytoma and paraganglioma (PPGL) but rarely, if ever, in other tumours. In an effort to understand that paradox and gain insights into the pathogenesis of pseudohypoxic PPGL, we constructed mice in which the principal HIF prolyl hydroxylase, Phd2, is inactivated in the adrenal medulla using TH-restricted Cre recombinase. Investigation of these animals revealed a gene expression pattern closely mimicking that of pseudohypoxic PPGL. Spatially resolved analyses demonstrated a binary distribution of two contrasting patterns of gene expression among adrenal medullary cells. Phd2 inactivation resulted in a marked shift in this distribution towards a Pnmt−/Hif-2α+/Rgs5+ population. This was associated with morphological abnormalities of adrenal development, including ectopic TH+ cells within the adrenal cortex and external to the adrenal gland. These changes were ablated by combined inactivation of Phd2 with Hif-2α, but not Hif-1α. However, they could not be reproduced by inactivation of Phd2 in adult life, suggesting that they arise from dysregulation of this pathway during adrenal development. Together with the clinical observation that pseudohypoxic PPGL manifests remarkably high heritability, our findings suggest that this type of tumour likely arises from dysregulation of a tissue-restricted action of the PHD2/HIF-2α pathway affecting adrenal development in early life and provides a model for the study of the relevant processes.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1879
Author(s):  
Maxwell Mathias ◽  
Jill Chang ◽  
Marta Perez ◽  
Ola Saugstad

Oxygen is the final electron acceptor in aerobic respiration, and a lack of oxygen can result in bioenergetic failure and cell death. Thus, administration of supplemental concentrations of oxygen to overcome barriers to tissue oxygen delivery (e.g., heart failure, lung disease, ischemia), can rescue dying cells where cellular oxygen content is low. However, the balance of oxygen delivery and oxygen consumption relies on tightly controlled oxygen gradients and compartmentalized redox potential. While therapeutic oxygen delivery can be life-saving, it can disrupt growth and development, impair bioenergetic function, and induce inflammation. Newborns, and premature newborns especially, have features that confer particular susceptibility to hyperoxic injury due to oxidative stress. In this review, we will describe the unique features of newborn redox physiology and antioxidant defenses, the history of therapeutic oxygen use in this population and its role in disease, and clinical trends in the use of therapeutic oxygen and mitigation of neonatal oxidative injury.


Medicina ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 1284
Author(s):  
Marie-Anne Magnan ◽  
Angèle Gayet-Ageron ◽  
Pierre Louge ◽  
Frederic Champly ◽  
Thierry Joffre ◽  
...  

Background and Objectives: Frostbite is a freezing injury that can lead to amputation. Current treatments include tissue rewarming followed by thrombolytic or vasodilators. Hyperbaric oxygen (HBO) therapy might decrease the rate of amputation by increasing cellular oxygen availability to the damaged tissues. The SOS-Frostbite study was implemented in a cross-border program among the hyperbaric centers of Geneva, Lyon, and the Mont-Blanc hospitals. The objective was to assess the efficacy of HBO + iloprost among patients with severe frostbite. Materials and Methods: We conducted a multicenter prospective single-arm study from 2013 to 2019. All patients received early HBO in addition to standard care with iloprost. Outcomes were compared to a historical cohort in which all patients received iloprost alone between 2000 and 2012. Inclusion criteria were stage 3 or 4 frostbite and initiation of medical care <72 h from frostbite injury. Outcomes were the number of preserved segments and the rate of amputated segments. Results: Thirty patients from the historical cohort were eligible and satisfied the inclusion criteria, and 28 patients were prospectively included. The number of preserved segments per patient was significantly higher in the prospective cohort (mean 13 ± SD, 10) compared to the historical group (6 ± 5, p = 0.006); the odds ratio was significantly higher by 45-fold (95%CI: 6-335, p < 0.001) in the prospective cohort compared to the historical cohort after adjustment for age and delay between signs of freezing and treatment start. Conclusions: This study demonstrates that the combination of HBO and iloprost was associated with higher benefit in patients with severe frostbite. The number of preserved segments was two-fold higher in the prospective cohort compared to the historical group (mean of 13 preserved segments vs. 6), and the reduction of amputation was greater in patients treated by HBO + iloprost compared with the iloprost only.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyu Yan ◽  
Xianzhi Qu ◽  
Buhan Liu ◽  
Yuanxin Zhao ◽  
Long Xu ◽  
...  

Hypoxia is one of the main driving forces that results in poor outcomes and drug resistance in hepatocellular carcinoma (HCC). As the critical cellular oxygen sensor, mitochondria respond to hypoxic stress by sending retrograde signals to the nucleus that initiate adaptive metabolic responses and maintain the survival of HCC cells. Increasing evidence suggested autophagy contributes to sustain mitochondrial metabolic and quality control. Understanding how mitochondria communicate with the nucleus and alter transcription may provide promising targets for HCC treatment. In this study, we found mitochondrial undergoes selective degradation by autophagy under hypoxia. Furthermore, autophagy-activated HDAC6 not only promoted the nuclear translocation of β-catenin but also increased the affinity of β-catenin to the transcription repressor chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TF II), which suppressed mitochondrial oxidative phosphorylation-related genes transcription. Our data showed that autophagy served as a critical mediator of integrating mitochondrial energy metabolism and nuclear transcription. HDAC6 may be a potential target for reducing the survival of HCC cells by interrupting mitochondria-nucleus crosstalk.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1605
Author(s):  
Carlos Fernandes ◽  
Afonso J. C. Videira ◽  
Caroline D. Veloso ◽  
Sofia Benfeito ◽  
Pedro Soares ◽  
...  

Mitochondriotropic antioxidants (MC3, MC6.2, MC4 and MC7.2) based on dietary antioxidants and analogs (caffeic, hydrocaffeic, trihydroxyphenylpropanoic and trihydroxycinnamic acids) were developed. In this study, we evaluate and compare the cytotoxicity profile of novel mitochondria-targeted molecules (generally known as MitoCINs) on human HepG2 and differentiated SH-SY5Y cells with the quinone-based mitochondria-targeted antioxidants MitoQ and SkQ1 and with two non-targeted antioxidants, resveratrol and coenzyme Q10 (CoQ10). We further evaluate their effects on mitochondrial membrane potential, cellular oxygen consumption and extracellular acidification rates. Overall, MitoCINs derivatives reduced cell viability at concentrations about six times higher than those observed with MitoQ and SkQ1. A toxicity ranking for both cell lines was produced: MC4 < MC7.2 < MC3 < MC6.2. These results suggest that C-6 carbon linker and the presence of a pyrogallol group result in lower cytotoxicity. MC3 and MC6.2 affected the mitochondrial function more significantly relative to MitoQ, SkQ1, resveratrol and CoQ10, while MC4 and MC7.2 displayed around 100–1000× less cytotoxicity than SkQ1 and MitoQ. Based on the mitochondrial and cytotoxicity cellular data, MC4 and MC7.2 are proposed as leads that can be optimized to develop safe drug candidates with therapeutic application in mitochondrial oxidative stress-related diseases.


2021 ◽  
Author(s):  
Yuanyuan Zheng ◽  
Linhao Li ◽  
Xuewei Bi ◽  
Ruyue Xue

Abstract Background Human umbilical cord MSCs (HuMSC)-based therapy has shown promising results in the treatment of intrauterine adhesions (lUA). In this study, our aim was to construct a HuMSC-seeded silk fibroin small-intestinal submucosa (SF-SIS) scaffold and evaluate the impact of repairing the damaged endometrium in an lUA mouse model. Methods To identify the functional effect of HuMSCs-silk cellulose (SF)- small-intestinal submucosa (SIS) scaffolds on the repair of damaged endometrium, a mouse lUA model was established in this study. The uterine morphology and fibrosis were evaluated by hematoxylin - eosin (H&E) staining and Masson staining. CircRNA sequencing, real-time PCR and RNA fluorescence in situ hybridization were used to screen and verify the potential circRNAs that involved in the repair of damaged endometrium by HuMSCs. Real time integrated cellular oxygen consumption rate (OCR) was measured using the Seahorse XF24 Extracellular Flux Analyser. The potential down-stream miRNAs and proteins of circRNAs were analyzed dual-luciferase report and Western Blot. Results We found that HuMSCs-SF-SIS not only increased the number of glands, but also reduced the ulcer area in the IUA model. Furthermore, we demonstrated that circPTP4A2 was elevated in the HuMSCs seeded on the SF-SIS scaffolds and stabilized the mitochondrial metabolism through miR-330-5p-PDK2 signaling, which contributes to endometrial repair progression. Conclusion In this study, we demonstrated that circPTP4A2 was elevated in the HuMSCs seeded on the SF-SIS scaffolds and stabilized the mitochondrial metabolism through miR-330-5p-PDK2 signaling, which contributes to endometrial repair progression. These findings demonstrate that HuMSC-seeded SF-SIS scaffolds are an encouraging method for the treatment of lUA.


2021 ◽  
Author(s):  
Chloe-Anne Martinez ◽  
Neha Bal ◽  
Peter A Cistulli ◽  
Kristina M Cook

Cellular oxygen-sensing pathways are primarily regulated by hypoxia inducible factor-1 (HIF-1) in chronic hypoxia and are well studied. Intermittent hypoxia also occurs in many pathological conditions, yet little is known about its biological effects. In this study, we investigated how two proposed cellular oxygen sensing systems, HIF-1 and KDM4A-C, respond to cells exposed to intermittent hypoxia and compared to chronic hypoxia. We found that intermittent hypoxia increases HIF-1 activity through a pathway distinct from chronic hypoxia, involving the KDM4A, -B and -C histone lysine demethylases. Intermittent hypoxia increases the quantity and activity of KDM4A-C resulting in a decrease in H3K9 methylation. This contrasts with chronic hypoxia, which decreases KDM4A-C activity, leading to hypermethylation of H3K9. Demethylation of histones bound to the HIF1A gene in intermittent hypoxia increases HIF1A mRNA expression, which has the downstream effect of increasing overall HIF-1 activity and expression of HIF target genes. This study highlights how multiple oxygen-sensing pathways can interact to regulate and fine tune the cellular hypoxic response depending on the period and length of hypoxia.


Sign in / Sign up

Export Citation Format

Share Document