Stochastic Response and Stability Analysis of Two-Point Mooring System

Author(s):  
A. K. Banik ◽  
T. K. Datta

The stochastic response and stability of a two-point mooring system are investigated for random sea state represented by the P-M sea spectrum. The two point mooring system is modeled as a SDOF system having only stiffness nonlinearity; drag nonlinearity is represented by an equivalent linear damping. Since no parametric excitation exists and only the linear damping is assumed to be present in the system, only a local stability analysis is sufficient for the system. This is performed using a perturbation technique and the Infante’s method. The analysis requires the mean square response of the system, which may be obtained in various ways. In the present study, the method using van-der-Pol transformation and F-P-K equation is used to obtain the probability density function of the response under the random wave forces. From the moment of the probability density function, the mean square response is obtained. Stability of the system is represented by an inequality condition expressed as a function of some important parameters. A two point mooring system is analysed as an illustrative example for a water depth of 141.5 m and a sea state represented by PM spectrum with 16 m significant height. It is shown that for certain combinations of parameter values, stability of two point mooring system may not be achieved.

2016 ◽  
Vol 23 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Yaping Zhao

An improved stochastic averaging method of the energy envelope is proposed, whose application sphere is extensive and whose implementation is convenient. An oscillating system with both nonlinear damping and stiffness is taken into account. Its averaged Fokker-Planck-Kolmogorov (FPK) equation in respect of the transition probability density function of the energy envelope is deduced by virtue of the method mentioned above. Under the initial and boundary conditions, the joint probability density function as to the displacement and velocity of the system is worked out in closed form after solving the averaged FPK equation by right of a technique based on the integral transformation. With the aid of the special functions, the transient solutions of the probabilistic characteristics of the system response are further derived analytically, including the probability density functions and the mean square values. A simple approach to generate the ideal white noise is drastically ameliorated in order to produce the stationary wide-band stochastic external excitation for the Monte Carlo simulating investigation of the nonlinear system. Both the theoretical solution and the numerical solution of the probabilistic properties of the system response are obtained, which are extremely coincident with each other. The numerical simulation and the theoretical computation all show that the time factor has a certain influence on the probability characteristics of the response. For example, the probabilistic distribution of the displacement tends to be scattered and the mean square displacement trends toward its steady-state value as time goes by. Of course the transient process to reach the steady-state value will obviously be shorter if the damping of the system is greater.


1993 ◽  
Vol 43 (1-2) ◽  
pp. 13-24
Author(s):  
L. O. Odongo ◽  
M. Samanta

The problem of estimating the integral of the square of a probability density function is considered, It is shown that under some regularity conditions the kernel estimate of this functional is asymptotically normally distributed. An expression for the smoothing parameter that minimizes the mean square error of the estimate is derived. Results of simulation studies are included. AMS (1980) Subject Classification: Primary 62G07 Secondary 60FOS.


Author(s):  
Giuseppina Autuori ◽  
Federico Cluni ◽  
Vittorio Gusella ◽  
Patrizia Pucci

In this paper, we yield with a nonlocal elastic rod problem, widely studied in the last decades. The main purpose of the paper is to investigate the effects of the statistic variability of the fractional operator order s on the displacements u of the rod. The rod is supposed to be subjected to external distributed forces, and the displacement field u is obtained by means of numerical procedure. The attention is particularly focused on the parameter s, which influences the response in a nonlinear fashion. The effects of the uncertainty of s on the response at different locations of the rod are investigated by the Monte Carlo simulations. The results obtained highlight the importance of s in the probabilistic feature of the response. In particular, it is found that for a small coefficient of variation of s, the probability density function of the response has a unique well-identifiable mode. On the other hand, for a high coefficient of variation of s, the probability density function of the response decreases monotonically. Finally, the coefficient of variation and, to a small extent, the mean of the response tend to increase as the coefficient of variation of s increases.


1970 ◽  
Vol 37 (3) ◽  
pp. 612-616 ◽  
Author(s):  
L. L. Bucciarelli ◽  
C. Kuo

The mean-square response of a lightly damped, second-order system to a type of non-stationary random excitation is determined. The forcing function on the system is taken in the form of a product of a well-defined, slowly varying envelope function and a noise function. The latter is assumed to be white or correlated as a narrow band process. Taking advantage of the slow variation of the envelope function and the small damping of the system, relatively simple integrals are obtained which approximate the mean-square response. Upper bounds on the mean-square response are also obtained.


1977 ◽  
Vol 44 (3) ◽  
pp. 487-491 ◽  
Author(s):  
S. F. Masri ◽  
F. Udwadia

The transient mean-square displacement, slope, and relative motion of a viscously damped shear beam subjected to correlated random boundary excitation is presented. The effects of various system parameters including the spectral characteristics of the excitation, the delay time between the beam support motion, and the beam damping have been investigated. Marked amplifications in the mean-square response are shown to occur for certain dimensionless time delays.


2006 ◽  
Vol 74 (4) ◽  
pp. 603-613 ◽  
Author(s):  
Jeng Luen Liou ◽  
Jen Fin Lin

In the present study, the fractal theory is applied to modify the conventional model (the Greenwood and Williamson model) established in the statistical form for the microcontacts of two contact surfaces. The mean radius of curvature (R) and the density of asperities (η) are no longer taken as constants, but taken as variables as functions of the related parameters including the fractal dimension (D), the topothesy (G), and the mean separation of two contact surfaces. The fractal dimension and the topothesy varied by differing the mean separation of two contact surfaces are completely obtained from the theoretical model. Then the mean radius of curvature and the density of asperities are also varied by differing the mean separation. A numerical scheme is thus developed to determine the convergent values of the fractal dimension and topothesy corresponding to a given mean separation. The topographies of a surface obtained from the theoretical prediction of different separations show the probability density function of asperity heights to be no longer the Gaussian distribution. Both the fractal dimension and the topothesy are elevated by increasing the mean separation. The density of asperities is reduced by decreasing the mean separation. The contact load and the total contact area results predicted by variable D, G*, and η as well as non-Gaussian distribution are always higher than those forecast with constant D, G*, η, and Gaussian distribution.


1976 ◽  
Vol 43 (1) ◽  
pp. 150-158 ◽  
Author(s):  
W. Mosberg ◽  
M. Yildiz

The mean-square wave response of a lightly damped thermoviscoelastic medium to a special type of nonstationary random excitation is determined. The excitation function on the thermoviscoelastic medium is taken in the form of a product of a well-defined, slowly varying envelope function, and a part which prescribes the statistical characteristics of the excitation. Both the unit step and rectangular step functions are used for the envelope function, and both white noise and noise with an exponentially decaying harmonic correlation function are used to prescribe the statistical property of the excitation. By taking into consideration the slow variation envelope function and the wave characteristics of the lightly damped thermoviscoelastic medium, the mean-square response (as a function of temperature, excitation, and damping parameters with the aid of reversible and irreversible thermodynamics) is evaluated.


2007 ◽  
Vol 129 (5) ◽  
pp. 672-677
Author(s):  
Robin C. Redfield

Output variables of dynamic systems subject to random inputs are often quantified by mean-square calculations. Computationally for linear systems, these typically involve integration of the output spectral density over frequency. Numerically, this is a straightforward task and, analytically, methods exist to find mean-square values as functions of transfer function (frequency response) coefficients. These formulations offer analytical relationships between system parameters and mean-square response. This paper develops further analytical relationships in calculating mean-square values as functions of transfer function and state-space properties. Specifically, mean-square response is formulated from (i) system pole-zero locations, (ii) as a spectral decomposition, and (iii) in terms of a system matrix transfer function. Direct, closed-form relationships between response and these properties are afforded. These new analytical representations of the mean-square calculation can provide significant insight into dynamic system response and optimal design/tuning of dynamic systems.


Sign in / Sign up

Export Citation Format

Share Document