A Finite Element Analysis for Unbonded Flexible Risers Under Axial Tension

Author(s):  
Ali Bahtui ◽  
Hamid Bahai ◽  
Giulio Alfano

Recent developments on the numerical analysis of detailed finite element models of unbonded flexible risers using ABAQUS are presented. Several analytical methods are studied and combined together, and their results are compared with those obtained in the finite element model for two different tests, the second one involving cyclic loading. In the finite element model all layers are modeled separately and contact interfaces are placed between each layer. A fully explicit time-integration scheme was used on a 16-processor cluster. The very good agreement found from numerical and analytical comparisons validates the use of our numerical model to provide benchmark solutions against which further detailed investigation will be made.

Author(s):  
A. Bahtui ◽  
H. Bahai ◽  
G. Alfano

This paper presents a detailed finite element analysis of a five-layer unbonded flexible riser. The numerical results are compared analytical solutions for various load cases. In the finite element model all layers are modelled separately with contact interfaces placed between each layer. The finite element model includes the main features of the riser geometry with very little simplifying assumptions made. The numerical model was solved using a fully explicit time-integration scheme implemented in a parallel environment on a 16-processor cluster. The very good agreement found from numerical and analytical comparisons validates the use of our numerical model to provide benchmark solutions against which further detailed investigation will be made.


Author(s):  
A. Bahtui ◽  
H. Bahai ◽  
G. Alfano

This paper presents a detailed finite-element analysis of unbonded flexible risers. The numerical results are compared to the analytical solutions for various load cases. In the finite-element model, all layers are modeled separately with contact interfaces between each layer. The finite-element model includes the main features of the riser geometry with very little simplifying assumptions made. The numerical model was solved using a fully explicit time-integration scheme implemented in a parallel environment on a 16-processor cluster. The very good agreement found from numerical and analytical comparisons validates the use of our numerical model to provide benchmark solutions against which further detailed investigation will be made.


Author(s):  
A. Bahtui ◽  
H. Bahai ◽  
G. Alfano

This paper presents an analytical formulation and a finite element analysis of the behavior of multilayer unbonded flexible risers. The finite element model accurately incorporates all the fine details of the riser that were previously considered to be important but too difficult to simulate due to the significant associated computational cost. All layers of the riser are separately modeled, and contact interaction between layers has been accounted for. The model includes geometric nonlinearity as well as frictional effects. The analysis considers the main modes of flexible riser loading, which include internal and external pressures, axial tension, torsion, and bending. Computations were performed by employing a fully explicit time integration scheme on a parallel 16-processor cluster of computers. Consistency of simulation results was demonstrated by comparison with those of the analytical model of an identical structure. The close agreement gives confidence in both approaches.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
J. Y. Li ◽  
Z. X. Qiu ◽  
J. S. Ju

ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


Author(s):  
Budy Notohardjono ◽  
Shawn Canfield ◽  
Suraush Khambati ◽  
Richard Ecker

Shorter development design schedules and increasingly dense product designs create difficult challenges in predicting structural performance of a mainframe computer’s structure. To meet certain certification benchmarks such as the Telcordia Technologies Generic Requirements GR-63-CORE seismic zone 4 test profile, a physical test is conducted. This test will occur at an external location at the end of design cycle on a fully functional and loaded mainframe system. The ability to accurately predict the structural performance of a mainframe computer early in the design cycle is critical in shortening its development time. This paper discusses an improved method to verify the finite element analysis results predicting the performance of the mainframe computer’s structure long before the physical test is conducted. Sine sweep and random vibration tests were conducted on the frame structure but due to a limitation of the in-house test capability, only a lightly loaded structure can be tested. Evaluating a structure’s modal stiffness is key to achieving good correlation between a finite element (FE) model and the physical system. This is typically achieved by running an implicit modal analysis in a finite element solver and comparing it to the peak frequencies obtained during physical testing using a sine sweep input. However, a linear, implicit analysis has its limitations. Namely, the inability to assess the internal, nonlinear contact between parts. Thus, a linear implicit analysis may be a good approximation for a single body but not accurate when examining an assembly of bodies where the interaction (nonlinear contact) between the bodies is of significance. In the case of a nonlinear assembly of bodies, one cannot effectively correlate between the test and a linear, implicit finite element model. This paper explores a nonlinear, explicit analysis method of evaluating a structure’s modal stiffness by subjecting the finite element model to a vibration waveform and thereafter post processing its resultant acceleration using Fast Fourier Transformation (FFT) to derive the peak frequencies. This result, which takes into account the nonlinear internal contact between the various parts of the assembly, is in line with the way physical test values are obtained. This is an improved method of verification for comparing sine sweep test data and finite element analysis results. The final verification of the finite element model will be a successful physical seismic test. The tests involve extensive sequential, uniaxial earthquake testing in both raised floor and non-raised floor environments in all three directions. Time domain acceleration at the top of the frame structure will be recorded and compared to the finite element model. Matching the frequency content of these accelerations will be proof of the accuracy of the finite element model. Comparative analysis of the physical test and the modeling results will be used to refine the mainframe’s structural elements for improved dynamic response in the final physical certification test.


2011 ◽  
Vol 201-203 ◽  
pp. 253-256 ◽  
Author(s):  
Zhi Peng Lv ◽  
Si Zhu Zhou ◽  
Xiu Hua Ma

According to the plunger pump movement principle, this paper analyzed the two kind of typical force situation of the crosshead, and obtained the theoretical maximum force. Established the finite element model of the crosshead, gave an analysis to the load handling and boundary condition. The last results of the node stress and displacement show that the crosshead can work safely.


2020 ◽  
Vol 26 (3) ◽  
pp. 127-144
Author(s):  
Huda Hussien Ahmed ◽  
Salah R. Al-Zaidee

This paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis. The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate the actual geostatic stress on the site. Comparing between numerical and experimental results indicate that the proposed finite element model is accurate and adequate and it can be used in future work to simulate more complicated practical problems of piled-raft foundations. After its validation, this model was used to investigate the effectiveness of using piled with a raft foundation that subjected to eccentric loading. In this parametric study, the value of eccentricity  was taken equal to , , and . The numerical results indicated that there is a significant decrease in the bearing capacity for unpiled raft foundation compared to the piled raft foundation for the same eccentricity of the applied load.  


2013 ◽  
Vol 694-697 ◽  
pp. 194-197
Author(s):  
Li Juan Yu ◽  
Chang Ju Xu ◽  
Xue Cheng Zhang

In the test enginery, using reverse frame put the pulling force into the pressure is the most commonly structure method. This paper analyzed the buckling problem of the process of reverse frame working, established the finite element model , stability analyzed , putted forward and proved the critical condition of reverse frame in the course of stability, Verified in 10kN deadweight force standard machine.


Author(s):  
Budy Notohardjono ◽  
Richard Ecker ◽  
Shawn Canfield

A mainframe computer’s structure consists of a frame or rack, drawers with central processor units, IO equipment, memory and other electronic equipment. The focus of this structural mechanical analysis and design is on the frame, earthquake stiffening brackets and tie-down methods. The primary function of the frame is to protect critical electronic equipment in two modes. The first mode is during shipping shock and vibration, which provides excitation primarily in the vertical direction. The second mode of protection is protecting the equipment during seismic events where horizontal vibration can be significant. Frame stiffening brackets and tie-downs are features added to mainframe systems that must meet earthquake resistance requirements. Designing to withstand seismic events requires significant analysis and test efforts since the functional performance of the system must be maintained during and after seismic events. The frame stiffening brackets and anchorage system must have adequate strength and stiffness to counteract earthquake-induced forces, thereby preventing human injury and potential system damage. The frame’s stiffening bracket and tie-down combination must ensure continued system operation by limiting overall displacement of the structure to acceptable levels, while not inducing undue stress to the critical electronic components. This paper discusses the process of finite element analysis and testing of a mainframe computer structure to develop a design that can withstand a severe earthquake test profile. Finite element analysis modeling tools such as ANSYS, a general-purpose finite element solver, was used to analyze the initial frame design CAD model. Both implicit and explicit finite element methods were used to analyze the mainframe subjected to uniaxial and triaxial earthquake test profiles. The seismic simulation tests involve extensive uniaxial and triaxial earthquake testing in both raised floor and non-raised floor environments at a test facility. Prior to this extensive final test, in-house tests were conducted along with modal analysis of the prototype frame hardware. These tests are used to refine the dynamic characteristics of the finite element model and to design the frame stiffening bracket and tie-down system. The purpose of the modeling and in-house testing is to have a verified finite element model of the server frame and components, which will then lead to successful, seismic system tests. During experimental verification, the dynamic responses were recorded and analyzed in both the time and frequency domains. The use of explicit finite element modeling, specifically LS-DYNA, extends the capability of implicit, linear modeling by allowing the incorporation of test data time history input and the experimentally derived damping ratio. When combined with the ability to model non-linear connections and material properties, this method provides better correlation to measured test results. In practice, the triaxial seismic time history was applied as input to the finite element model, which predicted regions of plastic strain and deformation. These results were used to iteratively simulate enhancements and successfully reduce structural failure in subsequent testing.


Sign in / Sign up

Export Citation Format

Share Document