Methodology for Time Domain Fatigue Life Assessment of Risers and Umbilicals

Author(s):  
Oddrun Steinkjer ◽  
Nils So̸dahl ◽  
Guttorm Gryto̸yr

Risers and umbilicals are exposed to dynamic loading from waves and floater motions. These structures are known to have a pronounced non-linear response characteristic. Non-linear time-domain finite element analyses is in general required to give an adequate description of the non-linearities involved. Analyses of a large number of short-term environmental conditions considering stochastic wave loading are required to give a representative description of the long-term fatigue loading on the structure. Short term fatigue damage is established by means of rain-flow cycle (RFC) counting in each stationary short-term condition. It is has been experienced that significant statistical uncertainties can be present in the short-term fatigue damage estimates. This is because the accumulated fatigue damage in a stationary condition normally has significant contribution from the largest stress cycles in the realisation. Selection of proper simulation length is hence essential to obtain reliable fatigue life estimates. Applicable codes and standards for risers and umbilicals provide Design Fatigue Factors (DFF) to secure adequate safety against failure due to wave induced fatigue. The total uncertainty in the calculated fatigue damage comes from various sources and the DFFs in e.g. DNV-OS-F201 “Dynamic Risers” and API-RP-2RD corresponds to a certain uncertainty level in the fatigue damage estimate. A recommended target value for the statistical uncertainty of the fatigue damage estimates is given with basis in these design codes. The objective of this paper is to give a description of a methodology recommended for time domain fatigue assessment. Special focus will be on the importance of adequate simulation time for predicting the short-term fatigue damage and selection of the short-term seastates in the scatter diagram. Statistical uncertainty is one source that the analyst actually can influence by selecting proper analysis methodology. A statistical uncertainty meassure can be used to evaluate the robustness in the estimated fatigue life. Assessment of statistical uncertainty in fatigue damage estimate is demonstrated by case studies. The fatigue assessment methodology discussed in this paper, will be described in an update of DNV-RP-F204 “Riser Fatigue” 2010.

Author(s):  
Guttorm Grytoyr ◽  
Oddrun Steinkjer

Well heads (WH) are exposed to dynamic loading from waves and floater motions through the marine drilling riser and the drill string. Risers are known to have a pronounced nonlinear response characteristic, this influences the dynamic loading of the well heads. Non-linear time-domain finite element analyses are in general required to give an adequate description of the non-linearities involved. Analyses of a large number of short-term environmental conditions considering stochastic wave loading are required to give a representative description of the long-term fatigue loading on the structure. The objective of this paper is to give an assessment of the sufficient simulation time of each short term seastate in order to get a required level of the statistical uncertainty of the long term fatigue load of the well head and conductor. The analyst can actually influence this statistical uncertainty by selecting proper analysis methodology. A statistical uncertainty measure can be used to evaluate the robustness in the estimated fatigue life. Assessment of statistical uncertainty in fatigue damage estimate is demonstrated by a case study, using typical North Sea conditions, and for varying boundary conditions. Short term fatigue damage is established by means of rainflow cycle (RFC) counting in each stationary short-term condition. It has been experienced that significant statistical uncertainties can be present in the short-term fatigue damage estimates. This is because the accumulated fatigue damage in a stationary condition normally has significant contribution from the largest stress cycles in the realization. Selection of sufficient simulation length is hence essential to obtain reliable fatigue life estimates. Applicable codes and standards for risers provide Design Fatigue Factors (DFF) to secure adequate safety against failure due to wave induced fatigue. The total uncertainty in the calculated fatigue damage comes from various sources and the DFFs in e.g. DNV-OS-F201 “Dynamic Risers” and API-RP-2RD corresponds to a certain uncertainty level in the fatigue damage estimate. A recommended target value for the statistical uncertainty of the fatigue damage estimates is given with basis in these design codes. There are no similar target values for statistical uncertainty of long term fatigue damage given in the applicable design codes for well heads and drilling equipment, hence the values from the riser codes have been selected as a starting point. The recommendations and methodologies presented in this paper, will be included in the upcoming DNV RP “Fatigue design and analysis of drilling and well equipment”, at present this is available only as a draft, ref. [1].


2011 ◽  
Vol 383-390 ◽  
pp. 2941-2944
Author(s):  
Wei Ming Du ◽  
Fei Xue

The crane reel is generally manufactured by section welding method when the diameter is over 380mm. With the cumulative fatigue damage principle which is based on stress S-N curve, the fatigue damage of one crane reel is analyzed by finite element method, the reel weld fatigue strength and fatigue life are calculated, and the simulation results are proved to be reliable. This method provides an efficient reference for crane reel design and residual life estimation.


Author(s):  
Masanori Ando ◽  
Hiroshi Kanasaki ◽  
Shingo Date ◽  
Koichi Kikuchi ◽  
Kenichiro Satoh ◽  
...  

In a component design at elevated temperature, fatigue and creep-fatigue is one of the most important failure modes, and fatigue and creep-fatigue life assessment in structural discontinuities is important issue to evaluate structural integrity of the components. Therefore, to assess the failure estimation methods, cyclic thermal loading tests with two kinds of cylindrical models with thick part were performed by using an induction heating coil and pressurized cooling air. In the tests, crack initiation and propagation processes at stress concentration area were observed by replica method. Besides those, finite element analysis (FEA) was carried out to estimate the number of cycles to failure. In the first test, a shorter life than predicted based on axisymmetric analysis. Through the 3 dimensional FEA, Vickers hardness test and deformation measurements after the test, it was suggested that inhomogeneous temperature distribution in hoop direction resulted in such precocious failure. Then, the second test was performed after improvement of temperature distribution. As a result, the crack initiation life was in a good agreement with the FEA result by considering the short term compressive holding. Through these test and FEA results, fatigue and creep-fatigue life assessment methods of Mod.9Cr-1Mo steel including evaluation of cyclic thermal loading, short term compressive holding and failure criterion, were discussed. In addition it was pointed out that the temperature condition should be carefully controlled and measured in the structural test with Mod.9Cr-1Mo steel structure.


Author(s):  
Zhigang Wei ◽  
Pingsha Dong ◽  
Litang Gao ◽  
Robert Kurth

Risk based treatment of degradation and failure in engineering components is an important topic in recent years with an emphasis on obtaining more detailed information for extreme events. Fatigue damage and life degradation caused by variable amplitude cyclic loading is dominated by such extreme events, and can be properly treated with the extreme value theory, which could help understand the damage nature of the fatigue damage process as well as to provide more efficient and robust approaches for engineering applications. In this paper, advanced extreme value theory is reviewed first. Methods such as peak counting, block maxima, and peaks over thresholds are investigated and compared in this paper with an emphasis on the relationship between the extreme value theory and the existing methods for fatigue life assessment. A few simple examples of uniaxial and multi-axial fatigue life assessment process are provided and the results are discussed. It is found that, if properly used, the extreme value theories can improve the efficiency of fatigue life assessment. Finally, a hybrid time- and frequency-based multi-axial fatigue life assessment procedure is proposed for wide band loadings.


2007 ◽  
Vol 345-346 ◽  
pp. 283-286
Author(s):  
Jong Duk Chung ◽  
Jang Sik Pyun ◽  
Ouk Sub Lee

In these days, most urban railway vehicles have been serviced under the random load application. However, it is considered to be a major factor of safety to predict the fatigue life for structures. It is thus required that fatigue assessment method for cumulative damage approach while Korea domestic regulations practices only the only has endurance limit approach. With this endurance limit approach, fatigue life prediction is impossible. In this research, the fatigue assessment for urban transit structure by using of cumulative damage approach method and related theories are presented.


Author(s):  
Upul S. Fernando ◽  
Michelle Davidson

The polymeric barrier is one of the key components in a flexible pipe, the sound function of which is essential for the containment of the transported medium, ensuring no leakage to the environment which could result in undesired consequences. According to API 17J the barrier design must be able to sustain certain static and dynamic strain conditions however; the actual design or the fatigue assessment of the barrier is not covered within the standard. Since the barrier is subjected to the same dynamic loading as the pipe the durability and integrity of the barrier is a key issue that needs to be addressed during barrier design for dynamic risers. This paper discusses a fatigue life assessment procedure for a barrier made of copolymer Grade 60512 PVDF. A flexible pipe barrier is manufactured by continuous extrusion of polymer onto a metallic carcass. The carcass has a spiral structure with an irregular outer profile. As such, the extruded polymer on this irregular surface inevitably gives non-uniform thickness and geometric anomalies where the polymer has flowed into gaps in the carcass. During pipe loading such anomalies act as stress concentrations and become critical locations for fatigue crack formation. The evaluation of the effect of the barrier profile shape on the fatigue durability of the barrier is therefore an essential requirement, in particular, in cases where the barrier consists of a single extruded polymer layer. Within the procedure outlined in this paper, the fatigue assessment of the barrier is made using the local plastic strain behaviour. The maximum stress concentration factor and the acceptable profile for the extruded barrier are selected to provide adequate safety margins for the project specific loading conditions. A procedure has been proposed to predict the local plastic strain of the barrier using global service loading data.


Sign in / Sign up

Export Citation Format

Share Document