Uncertainty of Long Term Fatigue Load of Subsea Well Heads

Author(s):  
Guttorm Grytoyr ◽  
Oddrun Steinkjer

Well heads (WH) are exposed to dynamic loading from waves and floater motions through the marine drilling riser and the drill string. Risers are known to have a pronounced nonlinear response characteristic, this influences the dynamic loading of the well heads. Non-linear time-domain finite element analyses are in general required to give an adequate description of the non-linearities involved. Analyses of a large number of short-term environmental conditions considering stochastic wave loading are required to give a representative description of the long-term fatigue loading on the structure. The objective of this paper is to give an assessment of the sufficient simulation time of each short term seastate in order to get a required level of the statistical uncertainty of the long term fatigue load of the well head and conductor. The analyst can actually influence this statistical uncertainty by selecting proper analysis methodology. A statistical uncertainty measure can be used to evaluate the robustness in the estimated fatigue life. Assessment of statistical uncertainty in fatigue damage estimate is demonstrated by a case study, using typical North Sea conditions, and for varying boundary conditions. Short term fatigue damage is established by means of rainflow cycle (RFC) counting in each stationary short-term condition. It has been experienced that significant statistical uncertainties can be present in the short-term fatigue damage estimates. This is because the accumulated fatigue damage in a stationary condition normally has significant contribution from the largest stress cycles in the realization. Selection of sufficient simulation length is hence essential to obtain reliable fatigue life estimates. Applicable codes and standards for risers provide Design Fatigue Factors (DFF) to secure adequate safety against failure due to wave induced fatigue. The total uncertainty in the calculated fatigue damage comes from various sources and the DFFs in e.g. DNV-OS-F201 “Dynamic Risers” and API-RP-2RD corresponds to a certain uncertainty level in the fatigue damage estimate. A recommended target value for the statistical uncertainty of the fatigue damage estimates is given with basis in these design codes. There are no similar target values for statistical uncertainty of long term fatigue damage given in the applicable design codes for well heads and drilling equipment, hence the values from the riser codes have been selected as a starting point. The recommendations and methodologies presented in this paper, will be included in the upcoming DNV RP “Fatigue design and analysis of drilling and well equipment”, at present this is available only as a draft, ref. [1].

Author(s):  
Oddrun Steinkjer ◽  
Nils So̸dahl ◽  
Guttorm Gryto̸yr

Risers and umbilicals are exposed to dynamic loading from waves and floater motions. These structures are known to have a pronounced non-linear response characteristic. Non-linear time-domain finite element analyses is in general required to give an adequate description of the non-linearities involved. Analyses of a large number of short-term environmental conditions considering stochastic wave loading are required to give a representative description of the long-term fatigue loading on the structure. Short term fatigue damage is established by means of rain-flow cycle (RFC) counting in each stationary short-term condition. It is has been experienced that significant statistical uncertainties can be present in the short-term fatigue damage estimates. This is because the accumulated fatigue damage in a stationary condition normally has significant contribution from the largest stress cycles in the realisation. Selection of proper simulation length is hence essential to obtain reliable fatigue life estimates. Applicable codes and standards for risers and umbilicals provide Design Fatigue Factors (DFF) to secure adequate safety against failure due to wave induced fatigue. The total uncertainty in the calculated fatigue damage comes from various sources and the DFFs in e.g. DNV-OS-F201 “Dynamic Risers” and API-RP-2RD corresponds to a certain uncertainty level in the fatigue damage estimate. A recommended target value for the statistical uncertainty of the fatigue damage estimates is given with basis in these design codes. The objective of this paper is to give a description of a methodology recommended for time domain fatigue assessment. Special focus will be on the importance of adequate simulation time for predicting the short-term fatigue damage and selection of the short-term seastates in the scatter diagram. Statistical uncertainty is one source that the analyst actually can influence by selecting proper analysis methodology. A statistical uncertainty meassure can be used to evaluate the robustness in the estimated fatigue life. Assessment of statistical uncertainty in fatigue damage estimate is demonstrated by case studies. The fatigue assessment methodology discussed in this paper, will be described in an update of DNV-RP-F204 “Riser Fatigue” 2010.


Author(s):  
Asokendu Samanta ◽  
P. Kurinjivelan

Fatigue is a phenomenon, which needs to be considered in the present day’s vessel design. The welded joints are particularly affected by the fatigue damage due to high stress concentrations caused by the metallurgical discontinuities present in the weld. For oil tankers and bulk carriers adequate guidelines for the fatigue strength assessment have been established by the classification societies. But for navy vessel, like offshore patrol vessel, the design guidelines for the fatigue strength analysis are not widely available. In the present paper, an attempt has been made to calculate the fatigue life of offshore patrol vessel (OPV). In general five stages of work is involved in calculating fatigue life of any ship structure. These are, load calculation, nominal and hot spot stress computation, long-term stress distribution, selection of S-N curve and the fatigue damage calculation. In the present study, the wave loads are obtained by the rule based estimation. The finite element analysis with the submodeling approach has been used to get the hot spot stress at critical locations. The two-parameter Weibull curve has been used to get the long-term distribution of stress. And at the end, the fatigue damage and the fatigue life have been computed using the Palmgren-Miner linear cumulative damage theory at the critical locations of the vessel.


Author(s):  
Bryan Nelson ◽  
Yann Quéméner ◽  
Tsung-Yueh Lin ◽  
Hsin-Haou Huang ◽  
Chi-Yu Chien

This study evaluated, by time-domain simulations, the fatigue life of the jacket support structure of a 3.6 MW wind turbine operating in Fuhai Offshore Wind Farm. The long-term statistical environment was based on a preliminary site survey that served as the basis for a convergence study for an accurate fatigue life evaluation. The wave loads were determined by the Morison equation, executed via the in-house HydroCRest code, and the wind loads on the wind turbine rotor were calculated by an unsteady BEM method. A Finite Element model of the wind turbine was built using Beam elements. However, to reduce the time of computation, the hot spot stress evaluation combined FE-derived Closed-Form expressions of the nominal stresses at the tubular joints and stress concentration factors. Finally, the fatigue damage was assessed using the Rainflow Counting scheme and appropriate SN curves. Based on a preliminary sensitivity study of the fatigue damage prediction, an optimal load setting of 60-min short-term environmental conditions with one-second time steps was selected. After analysis, a sufficient fatigue strength was identified, but further calculations involving more extensive long-term data measurements are required in order to confirm these results. Finally, this study highlighted the sensitivity of the fatigue life to the degree of fluctuation (standard deviation) of the wind loads, as opposed to the mean wind loads, as well as the importance of appropriately orienting the jacket foundations according to prevailing wind and wave conditions.


Author(s):  
S. Maleki ◽  
A. Mehmanparast ◽  
K. M. Nikbin

Practical time frames in newly developed steels, and technical and financial restrictions in test durations means that extrapolation of short-term laboratory test results to predict long-term high temperature service component failure is an area of concern when conducting a fitness for service or remaining life assessment. Recent literature presenting uniaxial creep and crack growth tests indicate that some materials show lower failure strains during longer term laboratory tests. The constraint based remaining failure ductility based NSW model crack prediction model has been shown to be capable of predicting upper/lower bounds of creep crack growth in a range of steels when data are obtained from relatively short to medium-term laboratory experiments (< 10,000 hours). This paper compares and analyses the response of the NSW model to predict long term creep crack propagation rates using a wide database of modified 9Cr material over s range of temperatures. The paper employs extrapolation methods of available uniaxial data to make viable conservative predictions of crack growth at high temperatures where at present no data is available.


2011 ◽  
Vol 383-390 ◽  
pp. 2941-2944
Author(s):  
Wei Ming Du ◽  
Fei Xue

The crane reel is generally manufactured by section welding method when the diameter is over 380mm. With the cumulative fatigue damage principle which is based on stress S-N curve, the fatigue damage of one crane reel is analyzed by finite element method, the reel weld fatigue strength and fatigue life are calculated, and the simulation results are proved to be reliable. This method provides an efficient reference for crane reel design and residual life estimation.


2007 ◽  
Vol 353-358 ◽  
pp. 130-133
Author(s):  
Keun Bong Yoo ◽  
Jae Hoon Kim

The objective of this study is to examine the feasibility of the X-ray diffraction method for the fatigue life assessment of high-temperature steel pipes used for main steam pipelines, re-heater pipelines and headers etc. in power plants. In this study, X-ray diffraction tests were performed on the specimens simulated for low cycle fatigue damage, in order to estimate fatigue properties at the various stages of fatigue life. As a result of X-ray diffraction tests, it was confirmed that the full width at the half maximum (FWHM) decreased with an increase in the fatigue life ratio, and that the FWHM and the residual stress due to fatigue damage were algebraically linearly related to the fatigue life ratio. From this relationship, a direct assessment of the remaining fatigue life was feasible.


2019 ◽  
Vol 9 (6) ◽  
pp. 1080 ◽  
Author(s):  
Shixi Tang ◽  
Jinan Gu ◽  
Keming Tang ◽  
Rong Zou ◽  
Xiaohong Sun ◽  
...  

The goal of this work is to improve the generalization of remaining useful life (RUL) prognostics for wheel hub bearings. The traditional life prognostics methods assume that the data used in RUL prognostics is composed of one specific fatigue damage type, the data used in RUL prognostics is accurate, and the RUL prognostics are conducted in the short term. Due to which, a generalizing RUL prognostics method is designed based on fault signal data. Firstly, the fault signal model is designed with the signal in a complex and mutative environment. Then, the generalizing RUL prognostics method is designed based on the fault signal model. Lastly, the simplified solution of the generalizing RUL prognostics method is deduced. The experimental results show that the proposed method gained good accuracies for RUL prognostics for all the amplitude, energy, and kurtosis features with fatigue damage types. The proposed method can process inaccurate fault signals with different kinds of noise in the actual working environment, and it can be conducted in the long term. Therefore, the RUL prognostics method has a good generalization.


Author(s):  
C. Shi ◽  
L. Manuel ◽  
M. A. Tognarelli

Slender marine risers used in deepwater applications can experience vortex-induced vibration (VIV). It is becoming increasingly common for field monitoring campaigns to be undertaken wherein data loggers such as strain sensors and/or accelerometers are installed on such risers to aid in VIV-related fatigue damage estimation. Such damage estimation relies on the application of empirical procedures that make use of the collected data. This type of damage estimation can be undertaken for different current profiles encountered. The empirical techniques employed make direct use of the measurements and key components in the analyszes (such as participating riser modes selected for use in damage estimation) are intrinsically dependent on the actual current profiles. Fatigue damage predicted in this manner is in contrast to analytical approaches that rely on simplifying assumptions on both the flow conditions and the response characteristics. Empirical fatigue damage estimates conditional on current profile type can account explicitly even for complex response characteristics, participating riser modes, etc. With significant amounts of data, it is possible to establish “short-term” fatigue damage rate distributions conditional on current type. If the relative frequency of different current types is known from metocean studies, the short-term fatigue distributions can be combined with the current distributions to yield integrated “long-term” fatigue damage rate distributions. Such a study is carried out using data from the Norwegian Deepwater Programme (NDP) model riser subject to several sheared and uniform current profiles and with assumed probabilities for different current conditions. From this study, we seek to demonstrate the effectiveness of empirical techniques utilized in combination with field measurements to predict the long-term fatigue damage and the fatigue failure probability.


Author(s):  
Masanori Ando ◽  
Hiroshi Kanasaki ◽  
Shingo Date ◽  
Koichi Kikuchi ◽  
Kenichiro Satoh ◽  
...  

In a component design at elevated temperature, fatigue and creep-fatigue is one of the most important failure modes, and fatigue and creep-fatigue life assessment in structural discontinuities is important issue to evaluate structural integrity of the components. Therefore, to assess the failure estimation methods, cyclic thermal loading tests with two kinds of cylindrical models with thick part were performed by using an induction heating coil and pressurized cooling air. In the tests, crack initiation and propagation processes at stress concentration area were observed by replica method. Besides those, finite element analysis (FEA) was carried out to estimate the number of cycles to failure. In the first test, a shorter life than predicted based on axisymmetric analysis. Through the 3 dimensional FEA, Vickers hardness test and deformation measurements after the test, it was suggested that inhomogeneous temperature distribution in hoop direction resulted in such precocious failure. Then, the second test was performed after improvement of temperature distribution. As a result, the crack initiation life was in a good agreement with the FEA result by considering the short term compressive holding. Through these test and FEA results, fatigue and creep-fatigue life assessment methods of Mod.9Cr-1Mo steel including evaluation of cyclic thermal loading, short term compressive holding and failure criterion, were discussed. In addition it was pointed out that the temperature condition should be carefully controlled and measured in the structural test with Mod.9Cr-1Mo steel structure.


Sign in / Sign up

Export Citation Format

Share Document