scholarly journals An Efficient 3-D FNPF Numerical Wave Tank for Virtual Large-Scale Wave Basin Experiment

Author(s):  
Seshu Nimmala ◽  
Solomon Yim ◽  
Stephan Grilli

This paper presents an accurate and efficient three-dimensional computational model (3D numerical wave tank), based on fully nonlinear potential flow (FNPF) theory, and its extension to incorporate the motion of a laboratory snake piston wavemaker, to simulate experiments in a large-scale 3D wave basin (i.e. to conduct “virtual” or numerical experiments). The code is based on a higher-order boundary element method combined with a Fast Multipole Algorithm (FMA). Particular efforts were devoted to making the code efficient for large-scale simulations using high-performance computing platforms to complement experimental 3D wave basins. The numerical simulation capability can serve as an optimization tool at the experimental planning and detailed design stages. To date, waves that can be generated in the NWT include solitary, Cnoidal, and Airy waves. In this paper, we detail the model, mathematical formulation, and wave generation. Experimental or analytical comparisons with NWT results are provided for several cases to assess the accuracy and applicability of the numerical model to practical engineering problems.

Author(s):  
Seshu B. Nimmala ◽  
Solomon C. Yim ◽  
Stephan T. Grilli

This paper presents a parallel implementation and validation of an accurate and efficient three-dimensional computational model (3D numerical wave tank), based on fully nonlinear potential flow (FNPF) theory, and its extension to incorporate the motion of a laboratory snake piston wavemaker, as well as an absorbing beach, to simulate experiments in a large-scale 3D wave basin. This work is part of a long-term effort to develop a “virtual” computational wave basin to facilitate and complement large-scale physical wave-basin experiments. The code is based on a higher-order boundary-element method combined with a fast multipole algorithm (FMA). Particular efforts were devoted to making the code efficient for large-scale simulations using high-performance computing platforms. The numerical simulation capability can be tailored to serve as an optimization tool at the planning and detailed design stages of large-scale experiments at a specific basin by duplicating its exact physical and algorithmic features. To date, waves that can be generated in the numerical wave tank (NWT) include solitary, cnoidal, and airy waves. In this paper we detail the wave-basin model, mathematical formulation, wave generation, and analyze the performance of the parallelized FNPF-BEM-FMA code as a function of numerical parameters. Experimental or analytical comparisons with NWT results are provided for several cases to assess the accuracy and applicability of the numerical model to practical engineering problems.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo

The hydrodynamic performance of a vertical cylindrical heaving buoy-type floating wave energy converter under large-amplitude wave conditions was calculated. For this study, a three-dimensional fully nonlinear potential-flow numerical wave tank (3D-FN-PNWT) was developed. The 3D-FN-PNWT was based on the boundary element method with Rankine panels. Using the mixed Eulerian–Lagrangian (MEL) method for water particle movement, nonlinear waves were produced in the PNWT. The PNWT can calculate the wave forces acting on the buoy accurately using an acceleration potential approach. The constant panels and least-square gradient reconstruction method were applied to regridding of computational boundaries. An artificial damping zone was employed to satisfy the open-sea conditions at the end free surface boundaries. The diffraction and radiation problems were solved, and their solutions were confirmed by a comparison with previous studies. The interaction of the incident wave, floating body, and power take-off (PTO) behavior was examined in the time domain using the developed 3D-FN-PNWT. From comparison, the difference between the conventional linear analysis and the nonlinear analysis in large-amplitude waves was examined.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 6585-6593 ◽  
Author(s):  
Xiaojie Tian ◽  
Qingyang Wang ◽  
Guijie Liu ◽  
Wei Deng ◽  
Zhiming Gao

Author(s):  
Christian Schmittner ◽  
Sascha Kosleck ◽  
Janou Hennig

A major goal in current model test practice is the correct modeling of the environmental conditions, as they denote the starting point for all further hydrodynamic analyses. As a standard, wave power spectra are calibrated prior to the actual model tests whereas the corresponding wave group spectra follow from the arbitrarily chosen wave seeds and are not being predicted in advance. Wave crest and height distributions can be determined from the measured wave time traces at different reference locations in the basin but they are not calibrated purposely either. In this paper, a numerical wave tank based on a boundary element method is used to predict wave time traces measured in the wave basin. Resulting wave crest and height distributions are compared with theoretical distribution functions and wave measurements in MARIN’s Offshore Basin. Some thoughts on a possible application to the generation of “deterministic wave seeds” conclude the paper.


Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo ◽  
Moo-Hyun Kim

Abstract The aim of this paper is to evaluate the hydrodynamic performance of a heaving buoy type wave energy converter (WEC) and power take-off (PTO) system. To simulate the nonlinear behavior of the WEC with PTO system, a three-dimensional potential numerical wave tank (PNWT) was developed. The PNWT is a numerical analysis tool that can accurately reproduce experiments in physical wave tanks. The developed time-domain PNWT utilized the previously developed NWT technique and newly adopted the side wall damping area. The PNWT is based on boundary element method with constant panels. The mixed Eulerian-Lagrangian method (MEL) and acceleration potential approach were adopted to simulate the nonlinear behaviors of free-surface nodes associated with body motions. The PM spectrum as an irregular incident wave condition was applied to the input boundary. A floating or fixed type WEC structure was placed in the center of the computational domain. A hydraulic PTO system composed of a hydraulic cylinder, hydraulic motor and generator was modeled with approximate Coulomb damping force and applied to the WEC system. Using the integrated numerical model of the WEC with PTO system, nonlinear interaction of irregular waves, the WEC structure, and the PTO system were simulated in the time domain. The optimal hydraulic pressure of the PTO condition was predicted. The hydrodynamic performance of the WEC was evaluated by comparing the linear and nonlinear analytical results and highlighted the importance accounting for nonlinear free surfaces.


Author(s):  
Zaibin Lin ◽  
Ling Qian ◽  
Wei Bai ◽  
Zhihua Ma ◽  
Hao Chen ◽  
...  

Abstract A 3-Dimensional numerical wave tank based on the fully nonlinear potential flow theory has been developed in OpenFOAM, where the Laplace equation of velocity potential is discretized by Finite Volume Method. The water surface is tracked by the semi-Eulerian-Lagrangian method, where water particles on the free surface are allowed to move vertically only. The incident wave is generated by specifying velocity profiles at inlet boundary with a ramp function at the beginning of simulation to prevent initial transient disturbance. Additionally, an artificial damping zone is located at the end of wave tank to sufficiently absorb the outgoing waves before reaching downstream boundary. A five-point smoothing technique is applied at the free surface to eliminate the saw-tooth instability. The proposed wave model is validated against theoretical results and experimental data. The developed solver could be coupled with multiphase Navier-Stokes solvers in OpenFOAM in the future to establish an integrated versatile numerical wave tank for studying efficiently wave structure interaction problems.


Sign in / Sign up

Export Citation Format

Share Document