Journal of Korean Society of Coastal and Ocean Engineers
Latest Publications


TOTAL DOCUMENTS

490
(FIVE YEARS 138)

H-INDEX

8
(FIVE YEARS 3)

Published By Korean Society Of Coastal And Ocean Engineers

2288-2227, 1976-8192

2021 ◽  
Vol 33 (6) ◽  
pp. 298-307
Author(s):  
A Jeong Kim ◽  
Myeong Hee Lee ◽  
Seung Won Suh

Typhoons occur intensively between July and October, and the sea level is the highest during this time. In particular, the mean sea level in summer in Korea is higher than the annual mean sea level about 14.5cm in the west coast, 9.0 to 14.5cm in the south coast, and about 9.0 cm in the east coast. When the rising the sea level and a large typhoon overlap in summer, it can cause surges and flooding in low-lying coastal areas. Therefore, accurate calculation of the surge height is essential when designing coastal structures and assessing stability in order to reduce coastal hazards on the lowlands. In this study, the typhoon surge heights considering the summer mean sea level rise (SH_m) was calculated, and the validity of the analysis of abnormal phenomena was reviewed by comparing it with the existing surge height considering the annual mean sea level (SH_a). As a result of the re-analyzed study of typhoon surge heights for BOLAVEN (SANBA), which influenced in August and September during the summer sea level rise periods, yielded the differences of surge heights (cm) between SH_a and SH_m 7.8~24.5 (23.6~34.5) for the directly affected zone of south-west (south-east) coasts, while for the indirect south-east (south-west) coasts showed -1.0~0.0 (8.3~12.2), respectively. Whilst the differences between SH_a and SH_m of typhoons CHABA (KONG-REY) occurred in October showed remarkably lessened values as 5.2~ 14.2 (19.8~21.6) for the directly affected south-east coasts and 3.2~6.3 (-3.2~3.7) for the indirectly influenced west coast, respectively. The results show the SH_a does not take into account the increased summer mean sea level, so it is evaluated that it is overestimated compared to the surge height that occurs during an actual typhoon. Therefore, it is judged that it is necessary to re-discuss the feasibility of the surge height standard design based on the existing annual mean sea level, along with the accurate establishment of the concept of surge height.


2021 ◽  
Vol 33 (6) ◽  
pp. 308-320
Author(s):  
Yeon-Joong Kim ◽  
Joung-Woon Woo ◽  
Jong-Sung Yoon ◽  
Myoung-Kyu Kim

An integrated sediment management approach that includes the recovery of the amount of declined sediment supply is effective as a fundamental solution to coastal erosion. During planning, it is essential to analyze the transfer mechanism of the sediments generated from estuaries (the junction between a river and sea) to assess the amount and rate of sediment discharge (from the river to sea) supplied back to the coast. Although numerical models that interpret the tidal sand bar flushing process during flooding have been studied, thus far, there has been no study focusing on the formation and development processes of tidal sand bars. Therefore, this study aims to construct wave deformation, flow regime calculation, and topographic change analysis models to assess the amount of recovered sediment discharge and reproduce the tidal sand bar formation process through numerical analysis for integrated littoral drift management. The tidal sand bar formation process was simulated, and the wave energy and duration of action concepts were implemented to predict the long-term littoral movement. The river flux and wave conditions during winter when tidal sand bars dominantly develop were considered as the external force conditions required for calculation. The initial condition of the topographic data directly after the Maeupcheon tidal sand bar flushing during flooding was set as the initial topography. Consequently, the tidal sand bar formation and development due to nearshore currents dependent on the incident wave direction were reproduced. Approximately 66 h after the initial topography, a sand bar formation was observed at the Maengbang estuary.


2021 ◽  
Vol 33 (6) ◽  
pp. 287-292
Author(s):  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Van Phu Dang ◽  
Dong Hyawn Kim

Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.


2021 ◽  
Vol 33 (6) ◽  
pp. 226-237
Author(s):  
Seon Jung Park ◽  
Seol Hwa Park ◽  
Heui Jung Seo ◽  
Seung Min Park

Coastal safety accidents are characterized by a high proportion of human negligence and repeated occurrences of accidents caused by the same factors. The Korea Coast Guard prepares and implements various countermeasures to prevent accidents at coastal safety accident sites. However, there is a shortage of safety facilities and safety management personnel according to the limited budget. In addition, the ability to be proactively and proactively respond is low due to the limitations of the coastal safety accident risk forecasting system, which relies on the meteorological warning of the Korea Meteorological Administration. In this study, as part of preparing the foundation for establishing a preemptive and active coastal safety management system that can manage accident-causing factors, predict and evaluate risk, and implement response and mitigation measures after an accident occurs before coastal safety accidents occur. The establishment of a risk assessment system was proposed. The main evaluation factors and indicators for risk assessment were established through the analysis of the status of coastal safety accidents. The risk assessment methodology was applied to 40 major hazardous areas designated and managed by the Korea Coast Guard.


2021 ◽  
Vol 33 (6) ◽  
pp. 321-332
Author(s):  
Jong-In Lee ◽  
Geum Yong Lee ◽  
Young-Taek Kim

The crown wall with parapet on top of the rubble mound breakwater represents a relatively economic and efficient solution to reduce the wave overtopping discharge. However, the inclusion of parapet leads to increased wave pressure on the crown wall. The wave pressure on the crown wall is investigated by physical model test. To design the crown wall the wave loads should be available, and the horizontal wave pressure is still unclear. Regarding to the horizontal wave pressure on the crown wall, a series of experiments were conducted by changing the rubble mound type structure and the wave conditions. Based on these results, pressure modification factors of Goda’s (1974, 2010) formula have been suggested, which can be applicable for the practical design of the crown wall of the rubble-mound breakwater covered by tetrapods.


2021 ◽  
Vol 33 (6) ◽  
pp. 383-390
Author(s):  
Jong-In Lee ◽  
Il Rho Bae ◽  
Young-Taek Kim

The experiments in coastal engineering are very complex and a lot of components should be concerned. The experience has an important role in the successful execution. Hydraulic model experiments have been improved with the development of the wave generator and the advanced measuring apparatus. The hydraulic experiments have the advantage, that is, the stability of coastal structures and the hydraulic characteristics could be observed more intuitively rather than the numerical modelings. However, different experimental results can be drawn depending on the model scale, facilities, apparatus, and experimenters. In this study, two-dimensional hydraulic experiments were performed to suggest the guide of the test wave(random wave) generation, which is the most basic and important factor for the model test. The techniques for generating the random waves with frequency energy spectrum and the range for the incident wave height [(HS)M/(HS)T = 1~1.05] were suggested. The proposed guide for the test wave generation will contribute to enhancing the reliability of the experimental results in coastal engineering.


2021 ◽  
Vol 33 (6) ◽  
pp. 217-225
Author(s):  
Uk-Jae Lee ◽  
Dong-Hui Ko ◽  
Ji-Young Kim ◽  
Hong-Yeon Cho

In this study, wave spectrum data were calculated using the water surface elevation data observed at 5Hz intervals from the HeMOSU-2 meteorological tower installed on the west coast of Korea, and wave parameters were estimated using wave spectrum data. For all significant wave height ranges, the peak enhancement parameter (γ opt ) of the JONSWAP spectrum and the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated based on the observed spectrum, and the distribution of each parameter was confirmed. As a result of the analysis, the peak enhancement parameter (γ opt ) of the JONSWAP spectrum was calculated to be 1.27, which is very low compared to the previously proposed 3.3. And in the range of all significant wave heights, the distribution of the peak enhancement parameter (γ opt ) was shown as a combined distribution of probability mass function (PMF) and probability density function (PDF). In addition, the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated to be [0.245, β1.278], which are lower than the existing [0.300, -1.098], and the result of the linear correlation analysis between the two parameters was β = =3.86α.


2021 ◽  
Vol 33 (6) ◽  
pp. 374-382
Author(s):  
Young Jin Kim ◽  
Ngo Duc Vu ◽  
Dong Hyawn Kim

The scour risk assessment was conducted for ultimate limit state of newly developed penta pod suction bucket support structures for a 5.5 MW offshore wind turbine. The hazard was found by using an empirical formula for scour depth suitable for considering marine environmental conditions such as significant wave height, significant wave period, and current velocity. The scour fragility curve was calculated by using allowable bearing capacity criteria of suction foundation. The scour risk was assessed by combining the scour hazard and the scour fragility.


2021 ◽  
Vol 33 (6) ◽  
pp. 345-356
Author(s):  
Min Su Park

In order to increase the structural stability of existing caisson breakwater, the design and the construction is carried out by installation of new caissons on the back or the front of old caissons. In this study, we use the ANSYS AQWA program to analyze the wave forces acting on individual caisson according to effects of wave structure interaction when new caissons are additionally installed on existing caisson breakwater. Firstly, the wave force characteristics acting on the individual caisson were analyzed for each period (frequency) in the frequency domain. In time domain analysis, the dynamic wave force characteristics were strongly influenced by the distance between caissons on the frequency at which the unusual distribution of wave forces occurs.


2021 ◽  
Vol 33 (6) ◽  
pp. 246-256
Author(s):  
Seon Jung Park ◽  
Heui Jung Seo ◽  
Seung Min Park ◽  
Seol Hwa Park ◽  
Ike Jang Ahn ◽  
...  

Various development projects occurring on the coast cause an imbalance of surface sediments, causing coastal disasters or irreversible coastal erosion. Coastal erosion caused by the influence of various port structures built through coastal development can be directly identified by evaluating changes in the sediment budget, long-shore sediment, and cross-shore sediment. In other words, it will be possible to evaluate the causality between coastal development and coastal erosion by classifying regions due to single cause and regions due to multiple causes according to the changes in the sediment classified into the three types mentioned above. In this study, the cause of long-term and continuous erosion was analyzed based on the analysis results of the coastal development history and the Coastal Erosion Monitoring targeting the coast of Gangwon-do and Gyeongsangbuk-do on the east coast. In addition, in order to evaluate the degree of erosion caused by the construction of artificial coastal structures, the concept of erosion impact assessment was established, three methods were proposed for the impact assessment. The erosion impact of Hajeo port was assessed using the results of satellite image analysis presented in the Coastal Erosion Monitoring Report, it was assessed that the development of Hajeo port had an impact of 93.4% on erosion, and that of the coastal road construction had an impact of 6.6%.


Sign in / Sign up

Export Citation Format

Share Document