wave crest
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 69)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
Safa M Aldarabseh ◽  
Parviz Merati

Abstract This experiment was done to predict the evaporation rate from the wavy water surface under the different convection regimes ( free, forced, and mixed) at turbulent airflow conditions over a wide range of the ratio(Gr/Re2 ). Evaporation rate from wavy water surface is strongly affected by combinations between wave steepness and main airflow velocity above the wavy water surface. Experimental results show that no pattern can be followed for which combinations of evaporation rate will increase. Thus, only two facts can be noticed: the evaporation rate is larger than that measured under the same airflow velocity conditions with no waves existing on evaporated water surface because the airflow is smooth and attached along the still water surface and when increasing the wave steepness(H/L,H/T), Airflow will separate at the lee side of wave crest near to the bottom of the wave trough. Thus, vortex will generate in the airflow separation region. These vortexes are unstable and cause an increase in turbulence, reducing the water surface's resistance to vertical transport water vapor and increasing the evaporation rate. Also, experimental results show that the evaporation rates are somewhat less than that measured under the same airflow velocity with smaller wave steepness due to air trapped region observed at the leeside of the wave crest near the bottom of the wave trough. Evaporation rate is increasing with increase airflow velocity under the same convection regime.


2021 ◽  
Vol 945 (1) ◽  
pp. 012018
Author(s):  
Mushtaq Ahmed ◽  
Zafarullah Nizamani ◽  
Akihiko Nakayama ◽  
Montasir Osman

Abstract Offshore structures play a vital role in the economy of offshore oil-producing countries, where mostly fixed jacket type structures are used to produce oil and gas installed in shallow water. In an offshore environment where structures are installed, there exist met ocean forces such as wind, waves, and currents. These met ocean conditions when interacting with offshore structures near the free surface, generate loads. The estimation of such loads is very much important for the proper design of these structures. The primary aim of this study is to investigate the interaction of waves with a jacket platform by generating offshore environments in the numerical wave tank (NWT). To achieve this goal, ANSYS Fluent is used for the flow analysis by using continuity and Navier Stokes equation. Results are verified and validated with the analytical work. Wave crests under operating condition generate a force of 1.3 MN which is the lowest in magnitude as compared to wave crest which produces 4.5 MN force under extreme conditions. Unlike operating wave crest, the operating wave trough generates a higher force of 1 MN than extreme conditions which account for 1.5 MN forces. Forces produced by the extreme offshore environment are 30% higher than those generated under operating conditions. It is concluded from the results that a positive force is exerted onto the structure during the water entry phase while a negative force is observed when the water leaves the structure.


2021 ◽  
Vol 929 ◽  
Author(s):  
James N. Steer ◽  
O. Kimmoun ◽  
F. Dias

The movements of some massive ( ${O}(100)\ \textrm {t}$ ) clifftop boulders, once thought to have been caused by tsunami, have been reattributed to storm waves in several recent papers. However, the precise wave-impact modes and transport mechanisms are unknown. We present preliminary linear acceleration, pressure and displacement data recorded by a $1\,{:}\,30$ scale clifftop boulder impacted by a focused breaking wave in a laboratory flume. The 8 kg boulder was placed atop a 0.25 m high platform and struck with a breaking wave of 0.34 m amplitude. Wave focus position was varied from 0.8 m fore of the platform to 0.27 m aft of the platform to alter the breaking crest shape and wave impact type while maintaining total wave spectral energy. Pressure and acceleration time series measurements from within the boulder show distinct impact types across focus positions. All impacts produced boulder displacement, ranging from 5 mm to 42 mm (0.15 m to 1.3 m at full scale, assuming Froude scaling). The largest boulder pressures were recorded when the wave crest and trough struck the boulder at the same position (flip-through). The largest boulder displacements were measured when high pressures and long impact durations occurred simultaneously and wave focusing was close to flip-through.


Author(s):  
Julia W. Fiedler ◽  
Lauren Kim ◽  
Robert L. Grenzeback ◽  
Adam P. Young ◽  
Mark A. Merrifield

AbstractWe demonstrate that a hovering, drone-mounted laser scanner (LiDAR) paired with a survey-grade satellite and inertial positioning system measures the wave transformation across the surf zone and the resulting runup with accuracy almost equal to a stationary truck-mounted terrestrial LiDAR. The drone, a multi-rotor small uncrewed aircraft system (sUAS), provides unobstructed measurements by hovering above the surf zone at 20 m elevation while scanning surfaces along a 150 m-wide cross-shore transect. The drone enables rapid data collection in remote locations where terrestrial scanning may not be possible. Allowing for battery changes, about 17 minutes of scanning data can be acquired every 25 minutes for several hours. Observations were collected with a wide (Hs = 2.2 m) and narrow (Hs = 0.8 m) surf zone, and are validated with traditional land-based survey techniques and an array of buried pressure sensors. Thorough post-processing yields a stable ( = 1.7 cm) back beach topography estimate comparable to the terrestrial LiDAR ( = 0.8 cm). Statistical wave properties and runup values are calculated, as well as bathymetry inversions using a relatively simple nonlinear correction to wave crest phase speed in the surf zone, illustrating the utility of drone-based LiDAR observations for nearshore processes.


2021 ◽  
Vol 9 (9) ◽  
pp. 1027
Author(s):  
Nurul Uyun Azman ◽  
Mohd Khairi Abu Husain ◽  
Noor Irza Mohd Zaki ◽  
Ezanizam Mat Soom ◽  
Nurul Azizah Mukhlas ◽  
...  

The structural integrity of offshore platforms is affected by degradation issues such as subsidence. Subsidence involves large settlement areas, and it is one of the phenomena that may be experienced by offshore platforms throughout their lives. Compaction of the reservoir is caused by pressure reduction, which results in vertical movement of soils from the reservoir to the mud line. The impact of subsidence on platforms will lead to a gradually reduced wave crest to deck air gap (insufficient air gap) and cause wave-in-deck. The wave-in-deck load can cause significant damage to deck structures, and it may cause the collapse of the entire platform. This study aims to investigate the impact of wave-in-deck load on structure response for fixed offshore structure. The conventional run of pushover analysis only considers the 100-year design crest height for the ultimate collapse. The wave height at collapse is calculated using a limit state equation for the probabilistic model that may give a different result. It is crucial to ensure that the reserve strength ratio (RSR) is not overly estimated, hence giving a false impression of the value. This study is performed to quantify the wave-in-deck load effects based on the revised RSR. As part of the analysis, the Ultimate Strength for Offshore Structures (USFOS) software and wave-in-deck calculation recommended by the International Organization for Standardization (ISO) as practised in the industry is adopted to complete the study. As expected, the new revised RSR with the inclusion of wave-in-deck load is lower and, hence, increases the probability of failure (POF) of the platform. The accuracy and effectiveness of this method will assist the industry, especially operators, for decision making and, more specifically, in outlining the action items as part of their business risk management.


2021 ◽  
pp. 2150449
Author(s):  
Hongyu Wu ◽  
Jinxi Fei ◽  
Wenxiu Ma

Through the [Formula: see text]-KP hierarchy, we present a new (3+1)-dimensional equation called weakly coupled generalized Kadomtsev–Petviashvili (wc-gKP) equation. Based on Hirota bilinear differential equations, we get rational solutions to wc-gKP equation, and further we obtain lump solutions by searching for a symmetric positive semi-definite matrix. We do some numerical analysis on the trajectory of rational solutions and fit the trajectory equation of wave crest. Some graphics are illustrated to describe the properties of rational solutions and lump solutions. The method used in this paper to get lump solutions by constructing a symmetric positive semi-definite matrix can be applied to other integrable equations as well. The results expand the understanding of lump and rational solutions in soliton theory.


2021 ◽  
Author(s):  
Octavio Sequeiros ◽  
Sergio Jaramillo

Abstract Port Fourchon Junction is located within Chevron's Fourchon Terminal, just south of Port Fourchon and is operated by Shell Pipeline Company LP. This manifold metering station is a critical junction for the Mars Corridor oil, as oil production from Mars (MC-807), Ursa (MC-809), Titan (MC-941), Who Dat (MC-547), Medusa (MC-582), and Olympus (MC-807B) flows through this station via a 24" pipeline. Port Fourchon is at the edge of the Mississippi delta facing the sea, one of the world's most vulnerable low-elevation coastal zones. It is highly exposed to storm surge and wave-induced inundation under hurricanes which regularly visit the Gulf of Mexico. In addition, it experiences one of the largest rates of subsidence in the world, which combined with sea level rise, will increase the site vulnerability in the coming decades. This study assesses present and future scenarios of subsidence and sea level rise under extreme metocean conditions induced by hurricanes and their impact on Port Fourchon Junction. Local effects such as the differential settlement of the barrier beach have been also considered. Using results from the numerical model XBeach, a set of different present and future scenarios are modelled under extreme metocean conditions. These conditions and the subsequent design parameters calculated, are not obtained through traditional extreme value analysis methods, instead, they are estimated through the influence of boundary conditions forced with the corresponding return period values of the parameters. Boundary conditions for the simulations are extracted from Grand Isle and Port Fourchon sea level observations, and from FEMA and the Water Institute of the Gulf simulations. Port Fourchon site should be subject to flooding for 10-year return period conditions based on Grand Isle observations. For 5-6 years return period conditions some degree of milder partial flood should also be expected. This is well captured by the model. While the highest inundating level is mostly dependent on winds, waves and surge acting together, surge is the single most critical parameter that defines the asset's base inundation level. Design future conditions based on surge extreme from FEMA simulations are recommended over surge extremes derived from Grand Isle observations. The barrier beach and the breakwaters play a key factor in sheltering site from waves and surge. Even when submerged under extreme high return period conditions they dissipate the waves ensuring that the maximum water level (wave crest elevation) on site is lower than would otherwise be without them. It is then important to maintain them fit for purpose during the entire lifespan of the asset. Both Grand Isle and Port Fourchon subsidence scenarios yield similar results. Based on the importance of Port Fourchon Junction facilities, the design criteria obtained, and the higher subsidence level observed at Port Fourchon (compared to Grand Isle), it is recommended that a 1000-year return period and future scenario based on FEMA surge level and Port Fourchon Relative Sea Level Rise (RSLR) is adopted for design. The subsidence associated to this scenario is 9.8 mm/year. The sea level rise associated to this scenario is 2 mm/year.


2021 ◽  
Author(s):  
Ulrike Romatschke ◽  
Vanda Grubišić

Stereophotogrammetric images collected during the Terrain-induced Rotor Experiment (T-REX), which took place in Owens Valley, California, in the spring of 2006, were used to track clouds and cloud fragments in space and time. We explore how photogrammetric data complements other instruments deployed during T-REX, and how it supports T-REX objectives to study the structure and dynamics of atmospheric lee waves and rotors. Algorithms for camera calibration, automatic feature matching, and 3D positioning of clouds were developed which enabled the study of cloud motion in highly turbulent mountain wave scenarios.The dynamic properties obtained with photogrammetric tools compare well with data collected by other T-REX instruments. In a mild mountain wave event, the whole life cycle of clouds moving through a lee wave crest was tracked in space and time showing upward and downward motion at the upstream and downstream side of the wave crest, respectively. During strong mountain wave events the steepening of the first lee wave as it developed into a hydraulic jump was tracked and quantified. Vertical cloud motion increased from ~2 m/s to 4 m/s and horizontal cloud motion decreased from 20 m/s to 16 m/s with the development of the hydraulic jump. Clouds at distinct vertical layers were tracked in other mountain wave events: moderate southerly flow was observed in the valley (~8 m/s), westerly motion of the same magnitude at the Sierra Nevada mountain crest level, and westerlies with speeds of over 20 m/s at even higher altitudes.


2021 ◽  
Author(s):  
Bin Ye ◽  
Jiawei Yu ◽  
Liwei Liu ◽  
Qing Wang ◽  
Zhiguo Zhang

Abstract Numerically simulating a ship with six-degrees-of-freedom response motions of an unsteady maneuver in a wave environment is very important in seakeeping characteristics of ship design. This paper presents the simulation studies of the turning motion in regular waves of the ONRT model. Numerical simulations were performed using viscous CFD code HUST-Ship to solve the RANS equation coupled with six degrees of freedom (6DOF) solid body motion equations and dynamic overset grids designed for ship hydrodynamics. RANS equations are solved by the finite difference method (FDM) and PISO arithmetic. The level-set method is used to simulate the free surface flow. Before the turning circle simulation, a V&V study is conducted for the total towed resistance. The real propeller was replaced by a description body force method in the process of turning motion. The constant rate of the revolution was applied throughout the simulation. The rotation of the propeller corresponds to the self-propulsion point of the model speed. The control of rudders was controlled by the following autopilot. The maximum rudder rate was assigned to 35.0 [deg/s]. The ship was released when a wave crest is passing the midship. The study focused on the parameters of the trajectories for turning circle, roll, pitch, velocity, etc, it is helpful to judge the influence of the wave on the turning motion. The simulation results match well with test data from IIHR.


2021 ◽  
Vol 9 (5) ◽  
pp. 526
Author(s):  
Weiyun Chen ◽  
Dan Wang ◽  
Lingyu Xu ◽  
Zhenyu Lv ◽  
Zhihua Wang ◽  
...  

Wave is a common environmental load that often causes serious damages to offshore structures. In addition, the stability for the submarine artificial slope is also affected by the wave loading. Although the landslide of submarine slopes induced by the waves received wide attention, the research on the influence of solitary wave is rare. In this study, a 2-D integrated numerical model was developed to investigate the stability of the foundation trench under the solitary wave loading. The Reynolds-averaged Stokes (RANS) equations were used to simulate the propagation of a solitary wave, while the current was realized by setting boundary inlet/outlet velocity. The pore pressure induced by the solitary wave was calculated by Darcy’s law, and the seabed was characterized by Mohr–Coulomb constitutive model. Firstly, the wave model was validated through the comparison between analytical solution and experimental data. The initial consolidation state of slope under hydrostatic pressure was achieved as the initial state. Then, the factor of stability (FOS) for the slope corresponding to different distances between wave crest and slope top was calculated with the strength reduction method. The minimum of FOS was defined as the stability index for the slope with specific slope ratio during the process of dynamic wave loading. The parametric study was conducted to examine the effects of soil strength parameters, slope ratio, and current direction. At last, the influence of upper slope ratio in a two-stage slope was also discussed.


Sign in / Sign up

Export Citation Format

Share Document