Optimising Reactive Control in Non-Ideal Efficiency Wave Energy Converters

Author(s):  
T. Strager ◽  
A. Martin dit Neuville ◽  
P. Fernández López ◽  
G. Giorgio ◽  
T. Mureşan ◽  
...  

When analytically optimising the control strategy in wave energy converters which use a point absorber, the efficiency aspect is generally neglected. The results presented in this paper provide an analytical expression for the mean harvested electrical power in non-ideal efficiency situations. These have been derived under the assumptions of monochromatic incoming waves and linear system behaviour. This allows to establish the power factor of a system with non-ideal efficiency. The locus of the optimal reactive control parameters is then studied and an alternative method of representation is developed to model the optimal control parameters. Ultimately we present a simple method of choosing optimal control parameters for any combination of efficiency and wave frequency.

Author(s):  
Jingjin Xie ◽  
Lei Zuo

Ocean wave energy is an indirect form of solar energy with great potential worldwide. Technologies on extracting energy from the ocean wave have been explored for centuries and are still undergoing with challenges. The nature of ocean wave and ocean wave energy are introduced with their mathematical models in this paper. The features and working principles of three forms of mainstream ocean wave energy converters (OWEC), including floating bodies (point absorber, attenuator, and terminator), oscillating water column (OWC) and wave overtopping, are presented together with their hydrodynamic performances. The corresponding control methodologies for these ocean wave energy converters, such as latching control, declutch control, reactive control, model predictive control (MPC), etc., are analyzed in a comprehensive manner thereafter. Optimal conditions for maximum power absorption are also introduced with mathematical modeling and derivations.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3668
Author(s):  
Anders H. Hansen ◽  
Magnus F. Asmussen ◽  
Michael M. Bech

Model predictive control based wave power extraction algorithms have been developed and found promising for wave energy converters. Although mostly proven by simulation studies, model predictive control based algorithms have shown to outperform classical wave power extraction algorithms such as linear damping and reactive control. Prediction models and objective functions have, however, often been simplified a lot by for example, excluding power take-off system losses. Furthermore, discrete fluid power forces systems has never been validated experimentally in published research. In this paper a model predictive control based wave power extraction algorithm is designed for a discrete fluid power power take-off system. The loss models included in the objective function are based on physical models of the losses associated with discrete force shifts and throttling. The developed wave power extraction algorithm directly includes the quantized force output and the losses models of the discrete fluid power system. The experimental validation of the wave power extraction algorithm developed in the paper shown an increase of 14.6% in yearly harvested energy when compared to a reactive control algorithm.


2015 ◽  
Vol 104 ◽  
pp. 370-386 ◽  
Author(s):  
Scott J. Beatty ◽  
Matthew Hall ◽  
Bradley J. Buckham ◽  
Peter Wild ◽  
Bryce Bocking

2019 ◽  
Vol 33 (13) ◽  
pp. 1950168 ◽  
Author(s):  
Qianlong Xu ◽  
Ye Li ◽  
Yingkai Xia ◽  
Weixing Chen ◽  
Feng Gao

Fully submerged sphere and cylinder point absorber (PA), wave energy converters (WECs) are analyzed numerically based on linearized potential flow theory. A boundary element method (BEM) (a radiation–diffraction panel program for wave-body interactions) is used for the basic wave-structure interaction analysis. In the present numerical model, the viscous damping is modeled by an equivalent linearized damping which extracts the same amount of wave energy over one cycle as the conventional quadratic damping term. The wave power capture width in each case is predicted. Comparisons are also made between the sphere and cylinder PAs which have identical geometrical scales and submerged depths. The results show that: (i) viscous damping has a greater influence on wave power performance of the cylinder PA than that of the sphere PA; (ii) the increasing wave height reduces wave power performance of PAs; (iii) the cylinder PA has a better wave power performance compared to the sphere PA in larger wave height scenarios, which indicates that fully submerged cylinder PA is a preferable prototype of WEC.


2018 ◽  
Vol 51 (29) ◽  
pp. 38-43 ◽  
Author(s):  
Siyuan Zhan ◽  
Bin Wang ◽  
Jing Na ◽  
Guang Li

Sign in / Sign up

Export Citation Format

Share Document