Numerical Prediction and Experimental Validation of Slamming Load for Large Container Ship Undergoing Parametric Rolling Motion

Author(s):  
Yuan Lin ◽  
Ning Ma ◽  
Deyu Wang ◽  
Xiechong Gu

This article proposes an approximate prediction method for slamming loads in parametric rolling condition for large container ships and the method has been validated through model experiments. Up to now, there have been some studies focused on two-dimensional asymmetric slamming analysis. Nevertheless, slamming load prediction in parametric rolling condition should consider not only heave and pitch motions, but also large amplitude roll motion which is usually neglected in analysis. For this purpose, a 6-DOF weakly nonlinear time domain model is adopted to predict the ship motions including parametric roll motion. The consequent roll motions obtained by the proposed model are incorporated in the calculation of impact angle and relative vertical velocity between ship section on the bow flare and wave surface, according to an asymmetric water entry assumption. Slamming impact loads and occurrence probability of slamming are analyzed by the Wagner model. To validate the numerical method, the segmented model experiment of a 10000 TEU container ship was executed and the slamming impact pressures and bending moments were measured for the wave condition and ship forward speed. The calculated pressures are compared with experiments. Based on numerical simulations, the maximum flare slamming pressures and slamming occurrence probability in different speed and wave conditions are investigated. The results indicate that flare slamming pressure is smaller than bottom slamming, but possessing longer lasting time and the occurrence of flare slamming is associated with the cycles of parametric rolling motions. Furthermore, the relationship between slamming pressure and 3-DOF motions namely roll, pitch and heave in the simultaneous simulation is given and the mechanism of flare slamming phenomena in parametric rolling condition is elaborated.

2012 ◽  
Vol 81 (6) ◽  
pp. 485-488
Author(s):  
Masanobu TOYODA ◽  
Tsunehisa HANDA

2022 ◽  
Vol 243 ◽  
pp. 110335
Author(s):  
Ying Tang ◽  
Shi-Li Sun ◽  
Rui-Song Yang ◽  
Hui-Long Ren ◽  
Xin Zhao ◽  
...  

2016 ◽  
Vol 60 (02) ◽  
pp. 92-100
Author(s):  
Oleg Gaidai ◽  
Gaute Storhaug ◽  
Arvid Naess

The paper describes a method for prediction of large container ship extreme roll angles occurring during sailing in harsh weather. Rolling is coupled with other ship motions and exhibits highly nonlinear behavior. Risk of losing containers due to a large roll is primary concern for ship transport. Because of non-stationarity and complicated nonlinearities of both waves and ship motions, it is a considerable challenge to model such a phenomenon. In case of extreme motions, the role of nonlinearities dramatically increases, activating effects of second and higher order. Moreover, laboratory tests may also be questioned because of the scaling and the sea state choice. Therefore, data measured on actual ships during their voyages in harsh weather provide a unique insight into statistics of ship motions. The aim of this work is to benchmark state of art method, which makes it possible to extract the necessary information about the extreme response from onboard measured time histories. The method proposed in this paper opens up the possibility to predict simply and efficiently both short- and long-term extreme response statistics.


2014 ◽  
Author(s):  
K Ouchi ◽  
◽  
Y Tanaka ◽  
A Taniguchi ◽  
J Takashina ◽  
...  

Author(s):  
Manases Tello Ruiz ◽  
Jose Villagomez ◽  
Guillaume Delefortrie ◽  
Evert Lataire ◽  
Marc Vantorre

Abstract The IMO Intact Stability Code considers the parametric rolling phenomenon as one of the stability failure modes because of the larger roll angles attained. This hazardous condition of roll resonance can lead to loss of cargo, passenger discomfort, and even (in the extreme cases) the ship’s capsize. Studies as such are mostly conducted considering wave characteristics corresponding to wave lengths around one ship length (λ ≈ LPP) and wave amplitudes varying from moderate to rough values. These wave characteristics, recognised as main contributors to parametric rolling, are frequently encountered in deep water. Waves with lengths of such magnitudes are also met by modern container ships in areas in close proximity to ports, but with less significant wave amplitudes. In such areas, due to the limited water depth and the relatively large draft of the ships, shallow water effects influence the overall ship behaviour as well. Studies dedicated to parametric rolling occurrence in shallow water are scarce in literature. In spite of no accidents being yet reported in such scenarios, its occurrence and methods for its prediction require further attention; this in order to prevent any hazardous conditions. The present work investigates the parametric roll phenomenon numerically and experimentally in shallow water. The study is carried out with the KRISO container ship (KCS) hull. The numerical investigation uses methods available in literature to study the susceptibility and severity of parametric rolling. Their applicability to investigate this phenomenon in shallow water is also discussed. The experimental analysis was carried out at the Towing Tank for Manoeuvres in Confined Water at Flanders Hydraulics Research (in co-operation with Ghent University). Model tests comprised a variation of different forward speeds, wave amplitudes and wave lengths (around one LPP). The water depth was fixed to a condition equivalent to a gross under keel clearance (UKC) of 100% of the ship’s draft.


Sign in / Sign up

Export Citation Format

Share Document