Capturing and Analysing Real-Time Data From Tugs

Author(s):  
Serena Lim ◽  
Kayvan Pazouki ◽  
Alan J. Murphy ◽  
Ben Zhang

Holistic energy management in the shipping industry involves reliable data collection, systematic processing and smart analysis. The era of digitisation allows sensor technology to be used on-board vessels, converting different forms of signal into a digital format that can be exported conveniently for further processing. Appropriate sensor selection is important to ensure continuous data collection when vessels sail through harsh conditions. However, without proper processing, this leads to the collection of big data sets but without resulting useful intelligence that benefits the industry. The adoption of digital and computer technology, allows the next phase of fast data processing. This contributes to the growing area of big data analysis, which is now a problem for many technological sectors, including the maritime industry. Enormous databases are often stored without clear goals or suitable uses. Processing of data requires engineering knowledge to ensure suitable filters are applied to raw data. This systematic processing of data leads to transparency in real time data display and contributes to predictive analysis. In addition, the generation of series of raw data when coupled with other external data such as weather information provides a rich database that reflects the true scenario of the vessel. Subsequent processing will then provide improved decision making tools for optimal operations. These advances open the door for different market analyses and the generation of new knowledge. This paper highlights the crucial steps needed and the challenges of sensor installation to obtain accurate data, followed by pre and post processing of data to generate knowledge. With this, big data can now provide information and reveal hidden patterns and trends regarding vessel operations, machinery diagnostics and energy efficient fleet management. A case study was carried out on a tug boat that operates in the North Sea, firstly to demonstrate confidence in the raw data collected and secondly to demonstrate the systematic filtration, aggregation and display of useful information.

2013 ◽  
Vol 278-280 ◽  
pp. 831-834 ◽  
Author(s):  
Xiao Sun ◽  
Hao Zhou ◽  
Xiang Jiang Lu ◽  
Yong Yang

This paper designed a motor winding testing system, it can do the dielectric withstand voltage test of inter-turn under 30kV.The system can communicate effectively between PC and machine, by using the PC's powerful capacity of process data and PLC's better stability and the Labview's convenient UI. So the system has real-time data collection, preservation, analysis and other characteristics. This system is able to achieve factory testing and type testing of the motor windings facilitating. Various performance indicators were stable and reliable by field test during a long time.


Author(s):  
M. Asif Naeem ◽  
Gillian Dobbie ◽  
Gerald Weber

In order to make timely and effective decisions, businesses need the latest information from big data warehouse repositories. To keep these repositories up to date, real-time data integration is required. An important phase in real-time data integration is data transformation where a stream of updates, which is huge in volume and infinite, is joined with large disk-based master data. Stream processing is an important concept in Big Data, since large volumes of data are often best processed immediately. A well-known algorithm called Mesh Join (MESHJOIN) was proposed to process stream data with disk-based master data, which uses limited memory. MESHJOIN is a candidate for a resource-aware system setup. The problem that the authors consider in this chapter is that MESHJOIN is not very selective. In particular, the performance of the algorithm is always inversely proportional to the size of the master data table. As a consequence, the resource consumption is in some scenarios suboptimal. They present an algorithm called Cache Join (CACHEJOIN), which performs asymptotically at least as well as MESHJOIN but performs better in realistic scenarios, particularly if parts of the master data are used with different frequencies. In order to quantify the performance differences, the authors compare both algorithms with a synthetic dataset of a known skewed distribution as well as TPC-H and real-life datasets.


Author(s):  
Rizwan Patan ◽  
Rajasekhara Babu M ◽  
Suresh Kallam

A Big Data Stream Computing (BDSC) Platform handles real-time data from various applications such as risk management, marketing management and business intelligence. Now a days Internet of Things (IoT) deployment is increasing massively in all the areas. These IoTs engender real-time data for analysis. Existing BDSC is inefficient to handle Real-data stream from IoTs because the data stream from IoTs is unstructured and has inconstant velocity. So, it is challenging to handle such real-time data stream. This work proposes a framework that handles real-time data stream through device control techniques to improve the performance. The frame work includes three layers. First layer deals with Big Data platforms that handles real data streams based on area of importance. Second layer is performance layer which deals with performance issues such as low response time, and energy efficiency. The third layer is meant for Applying developed method on existing BDSC platform. The experimental results have been shown a performance improvement 20%-30% for real time data stream from IoT application.


Author(s):  
Amitava Choudhury ◽  
Kalpana Rangra

Data type and amount in human society is growing at an amazing speed, which is caused by emerging new services such as cloud computing, internet of things, and location-based services. The era of big data has arrived. As data has been a fundamental resource, how to manage and utilize big data better has attracted much attention. Especially with the development of the internet of things, how to process a large amount of real-time data has become a great challenge in research and applications. Recently, cloud computing technology has attracted much attention to high performance, but how to use cloud computing technology for large-scale real-time data processing has not been studied. In this chapter, various big data processing techniques are discussed.


Sign in / Sign up

Export Citation Format

Share Document