An Integrated Numerical and Mineralogical Study of a High Pressure High Temperature Well

Author(s):  
Jose M. Segura ◽  
Miguel A. Caja ◽  
Laura García ◽  
Juan M. Jiménez ◽  
Jorge Díez ◽  
...  

Predicting drilling risks in advance is a major challenge in areas that lack drilling experience, and even when information from offset wells is available. Large overpressure was found at TD of an offshore exploratory well drilled mainly through shale. None of the other two previously drilled offset wells in the area had shown any sign of such a high overpressure. This study presents two complementary approaches to gain insight on the overpressure generation mechanisms. The effect of chemical compaction is first evaluated in terms of well cuttings analysis, including sample washing, high-resolution photo catalog, automated mineralogy and X-ray diffraction clay mineralogy analysis. The obtained mineralogical results confirm the presence of the dehydration diagenetic process involving the transformation of smectite to illite. Consequently, a numerical model is presented which combines the effect of mechanical and chemical compaction to predict pore pressure values very close to the overpressure observed during drilling. The model reproduces the depositional history of the lithological column by coupling mechanical and chemical compaction with fluid flow over geological time, and it allows predicting stress, porosity and pore pressure evolution at different geological ages. Calibration and verification of the results of the pore pressure model is done by comparison to drilling experience and logs (post-drill pore pressure profile, geology tops and density/porosity logs).

Author(s):  
Andrew S. Cohen

Lake sediments are both repositories and sources of information about lake history. Depositional products tell us about the mechanisms of transport or accumulation of important geochemical and fossil archives, but important clues about that history are imbedded in the pattern of sedimentation itself. Geologists have recognized this fact since the earliest paleolimnological studies. Although he would certainly not have called himself a paleolimnologist, Charles Lyell’s (1830) classic studies and interpretation of the depositional environments of the Eocene Paris Basin set the tone for a time-honored approach to the study of ancient lake deposits. Lyell recognized that understanding the physical, chemical, and biological attributes of lakes that affect sedimentation, obtained through modern observation, must be applied to a four-dimensional (spatial plus time) analysis of sedimentary deposits and depositional history. However, not everything we need to know or every process we need to invoke will necessarily arise from our short-term observations of modern lakes. Events that are unlikely to occur in the course of a brief, several-year experiment or period of monitoring may become virtual certainties over the long history of some lakes and may leave a sedimentary archive of which we have little prior understanding from modern studies (Dott, 1983). Furthermore, the sedimentary response that we observe to some external forcing event may differ depending on the time scale over which we observe the response (Dearing, 1991). Consider a hill slope that is undergoing accelerated erosion, and that is producing an accumulation of sediment in a downstream channel as a result of land-clearing activities. Initially there may be no response in terms of sedimentation rate in the downstream lake; all of the sediment is being held in temporary storage. This process may occur over time scales of a few decades. At some later time a triggering event, perhaps a series of abnormally high rainfall and discharge years, causes this sediment to be released to the lake, now at an accelerated rate. This becomes a sedimentary response that the paleolimnologist can record. But, over geological time scales of millennia or longer, the original process may be modified, and new ones may gain in importance.


Author(s):  
Caitlin E. Leslie ◽  
◽  
Ross Secord ◽  
Daniel J. Peppe ◽  
Stacy Atchley ◽  
...  

2020 ◽  
Author(s):  
Alan Pitts ◽  
◽  
Achim D. Herrmann ◽  
John T. Haynes ◽  
Gabriele Giuli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document