Vessel Interface Considerations for Ultra Deepwater Intervention Risers

Author(s):  
Rohit Vaidya ◽  
Mahesh Sonawane ◽  
Benjamin Toleman ◽  
Elaine Whiteley ◽  
Jonathan Rourke

Abstract For ultra-deepwater subsea wells, a riser system is required to conduct completion, intervention/workover and end of life activities. For ultra-deepwater riser systems with high temperature and pressure requirements, the intervention riser system often requires vessel interface optimization to achieve acceptable design response. The upper riser can be configured in several different ways, each with its own benefit from a safety, risk and performance perspective. This paper compares the riser response for various vessel interfaces for ultra-deepwater applications. As discussed above, intervention riser structural response is sensitive to the riser configuration at the vessel interface. For a typical intervention riser, due to ultra-deepwater and high tension requirements, the functional tension load may utilize up to 40% of yield strength thus decreasing the capacity available to accommodate bending and pressure loads. Vessel operators have options to modify the system configuration to improve the strength and fatigue response of the riser. The different vessel interface options include the tension lift frame (TLF) to vessel interface, the top tension application method and the use or otherwise of a surface tree dolly. Upper riser assembly (URA) loads may be optimized by use of rotary wear bushings, a cased wear joint assembly or flexjoints as a part of the stack-up. The various riser-vessel interface options are evaluated and compared in this paper. This paper highlights the riser design challenges for ultra-deepwater applications.

2018 ◽  
Vol 213 ◽  
pp. 207-214 ◽  
Author(s):  
Michael Hack ◽  
Wolfgang Korte ◽  
Stefan Sträßer ◽  
Matthias Teschner

1999 ◽  
Vol 122 (1) ◽  
pp. 22-26 ◽  
Author(s):  
M. Law ◽  
W. Payten ◽  
K. Snowden

Modeling of welded joints under creep conditions with finite element analysis was undertaken using the theta projection method. The results were compared to modeling based on a simple Norton law. Theta projection data extends the accuracy and predictive capability of finite element modeling of critical structures operating at high temperature and pressure. In some cases analyzed, it was found that the results diverged from those gained using a Norton law creep model. [S0094-9930(00)00601-6]


2020 ◽  
Author(s):  
Dapeng Wen ◽  
Yongfeng Wang ◽  
Junfeng Zhang ◽  
Pengxiao Li ◽  
Zhen-Min Jin

Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Lili Liu ◽  
Xiaozhi Wu ◽  
Weiguo Li ◽  
Rui Wang ◽  
Qing Liu

AbstractThe high temperature and pressure effects on the elastic properties of the AgRE (RE=Sc, Tm, Er, Dy, Tb) intermetallic compounds with B2 structure have been performed from first principle calculations. For the temperature range 0-1000 K, the second order elastic constants for all the AgRE intermetallic compounds follow a normal behavior: they decrease with increasing temperature. The pressure dependence of the second order elastic constants has been investigated on the basis of the third order elastic constants. Temperature and pressure dependent elastic anisotropic parameters A have been calculated based on the temperature and pressure dependent elastic constants.


ChemPhysChem ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Caroline Schuabb ◽  
Melanie Berghaus ◽  
Christopher Rosin ◽  
Roland Winter

Sign in / Sign up

Export Citation Format

Share Document