Comparison of Stress Intensity Factors of Two Flaws and a Combined Flaw Due to Combination Rules

Author(s):  
Kunio Hasegawa ◽  
Masaki Shiratori ◽  
Toshiro Miyoshi ◽  
Nagatoshi Seki

If the flaws detected during in-service inspection are multiple discrete flaws that are in close proximity to one another, the flaws are evaluated as to whether they are combined or not, in accordance with combination rules in the ASME Code. The combination rules require that multiple flaws shall be treated as a single combined flaw if the distance between the adjacent flaws is equal to or less than the dimension of the flaw depth. After the coalescence of the multiple flaws, the flaw length becomes larger and then the stress intensity factor of the combined flaw would be expected to be significantly larger. Stress intensity factors for two surface flaws and a combined flaw under membrane stress and bending stress were analyzed using influence function method. From the calculation results of the stress intensity factors for two flaws and the combined flaw, it is shown that less conservative combination rules are appropriate, as compared to the existing combination rules in the ASME Code.

1977 ◽  
Vol 99 (3) ◽  
pp. 477-484 ◽  
Author(s):  
J. M. Bloom ◽  
W. A. Van Der Sluys

This paper evaluates eight different analytical procedures used in determining elastic stress intensity factors for gradient or nonlinear stress fields. From a fracture viewpoint, the main interest in this problem comes from the nuclear industry where the safety of the nuclear system is of concern. A fracture mechanics analysis is then required to demonstrate the vessel integrity under these postulated accident conditions. The geometry chosen for his study is that of a 10-in. thick flawed plate with nonuniform stress distribution through the thickness. Two loading conditions are evaluated, both nonlinear and both defined by polynomials. The assumed cracks are infinitely long surface defects. Eight methods are used to find the stress intensity factor: 1–maximum stress, 2–linear envelope, 3–linearization over the crack length from ASME Code, Section XI, 4–equivalent linear moment from ASME Code, Section III, Appendix G for thermal loadings, 5–integration method from WRC 175, Appendix 4 for thermal loadings, 6–8-node singularity (quarter-point) isoparametric element in conjunction with the displacement method, 7–polynomial method, and 8–semi-infinite edge crack linear distribution over crack. Comparisons are made between all eight procedures with the finding that the methods can be ranked in order of decreasing conservatism and ease of application as follows: 1–maximum stress, 2–linear envelope, 3–linearization over the crack length, 4–polynomial method, and 5–singularity element method. Good agreement is found between the last three of these methods. The remaining three methods produce nonconservative results.


1975 ◽  
Vol 97 (1) ◽  
pp. 45-51 ◽  
Author(s):  
M. Jolles ◽  
J. J. McGowan ◽  
C. W. Smith

A technique consisting of stress-freezing photoelasticity coupled with a Taylor Series Expansion of the maximum local in-plane shearing stress known as the Taylor Series Correction Method (TSCM) is applied to the determination of stress intensity factors (SIF’s) in flat bottomed surface flaws of flaw depth/length ratios of approximately 0.033. Flaw depth/thickness ratios of approximately 0.20 and 0.40 were studied as were plate width/crack length ratios of approximately 2.33 and 1.25, the former of which corresponded to a nearly infinite width. Agreement to well within 10 percent was found with the Rice-Levy and Newman theories using a depth-modified secant correction and equivalent flaw depth/length ratios. The Shah-Kobayashi Theory, when compared on the same basis, was lower than the experimental results. Using a modified net section stress correction suggested by Shah, agreement with the Shah-Kobayashi Theory was greatly improved but agreement with the other theories was poorer. On the basis of the experiments alone, it was found that the SIF was intensified by about 10 percent by decreasing the plate width/crack length from 2.33 to 1.25.


Author(s):  
Kai Lu ◽  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Valery Lacroix

When multiple flaws are detected in structural components, remaining lives of the components are estimated by fatigue flaw growth calculations using combination rules in fitness-for-service codes. ASME, BS7910 and FITNET Codes provide different combination rules. Fatigue flaw growth for adjacent surface flaws in a pipe subjected to cyclic tensile stress were obtained by numerical calculations using these different combination rules. In addition, fatigue lives taking into account interaction effect between the two flaws were conducted by extended finite element method (X-FEM). As the calculation results, it is found that the fatigue lives calculated by the X-FEM are close to those by the ASME Code. Finally, it is worth noticing that the combination rule provided by the ASME Code is appropriate for fatigue flaw growth calculations.


Author(s):  
Adam R. Hinkle ◽  
James E. Holliday ◽  
David P. Jones

Fracture mechanics and fatigue crack-growth analysis rely heavily upon accurate values of stress intensity factors. They provide a convenient, single-parameter description to characterize the amplitude of the stress-field singularity at the crack tip, and are used to correlate brittle fracture and crack growth in pressure vessel and piping applications. Mode-I stress intensity factors that have been obtained for longitudinal semi-elliptical surface flaws on the inside of thick-walled cylinders using highly-refined finite element models are investigated. Using these results, weight function solutions are constructed and selected geometries are validated.


Sign in / Sign up

Export Citation Format

Share Document